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Collisionless Shocks
Mediated by collective electromagnetic interactions   

Show prominent non-thermal activity
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Now studied in laboratory 
with laser experiments!



Fermi mechanism (Fermi, 1949): random elastic collisions lead to energy gain 

In shocks, particles gain energy at any interaction (Krymskii 1977; Blandford & Ostriker; Bell; Axford et al.; 1978) 

DSA produces power-laws N(p)∝4!p2p-", depending on the compression ratio R=#d/#u only. 

For strong shocks (Mach number Ms=Vsh/cs>>1): R=4 and "=4

A universal acceleration mechanism
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Astroplasmas from first principles

Full-PIC approach                                             

Define electromagnetic fields on a grid 

Move particles via Lorentz force 

Evolve fields via Maxwell equations 

Computationally very challenging! 

Hybrid approach: Fluid electrons - Kinetic protons                                
(Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al. 
1993,1997,2004-2013; DC & Spitkovsky 2013-2015,…) 

massless electrons for more macroscopical time/length scales
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Hybrid simulations of collisionless shocks
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 dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014, Haggerty & DC, 2018)



Spectrum evolution
Diffusive Shock Acceleration: non-thermal tail with universal spectrum f(p)∝p-4 

Acceleration efficiency: ~15% of the shock bulk energy!
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CR-driven Magnetic-Field Amplification
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DC & Spitkovsky, 2013

Initial B field 
Ms=MA=30



3D simulations of a parallel shock
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Initial B field 

M=6
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Parallel vs Oblique shocks
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Dependence on shock strength (MA) and inclination
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More B amplification for stronger (higher MA) shocks
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Figure 6. Top panel : Magnetic field profile immediately upstream of the shock, for different Mach numbers as in the legend, at t = 100ω−1
c .

The profile is calculated by averaging over 200c/ωp in the transverse size and over 20ω−1
c in time, in order to smoothen the time and space

fluctuations due to the Bottom panel : Total magnetic field amplification factor in the precursor, averaged over a distance ∆x = 10Mc/ωp

ahead of the shock, as a function of the Alfvénic Mach number (red symbols). The dashed line ⟨Btot/B0⟩2 ∝ MA is consistent with the
prediction of resonant streaming instability (see text for details). A color figure is available in the online journal.

where Pw and Pcr are the pressure (along x) in magnetic
field and in CRs, and M̃A = (1+1/r)MA is the Alfvénic
Mach number in the shock reference frame (r ≈ 4 for
a strong shock, thereby typically M̃A ≃ 1.25MA); We
have also introduced the transverse (self-generated) com-

ponent of the field, B⊥(x) =
√

B2
y(x) +B2

z(x).

Assuming isotropy in the self-generated magnetic field,

one has B2
⊥

= 2
3B

2
tot, and in turn Pw ≈ B2

tot

12π . Dividing
both members of eq. 1 by ρũ2, where ũ is the fluid veloc-
ity int the shock frame, and introducing the normalized
CR pressure at the shock position ξcr = Pcr(xsh)

ρũ2 , one
finally gets

〈

Btot

B0

〉2

sh

≈ 3ξcrM̃A. (2)

The actual value of ξcr can be derived by measuring the
amount of braking of the fluid in the precursor (see Pa-
per I for an extensive discussion), and it is strictly re-
lated to the CR acceleration efficiency. In the range of

Mach numbers considered here, it varies between 10 and
15% at t = 200ω−1

c (also see figure 3 in Paper I). Quite
remarkably, if we pose ξcr = 0.15, eq. 2 provides a very
good fitting to the amplification factors inferred from our
simulations (dashed line in figure 6).
The extrapolation of the presented results to higher

Mach numbers according to eq. 2 is consistent with the
hypothesis that CR-induced instabilities can account for
the effective magnetic field amplification inferred at the
blast waves of young SNRs, even with moderate CR ac-
celeration efficiencies of about 10–20%.
It would be tempting to conclude that resonant stream-

ing instability is the almost effective channel through
which the CR current amplify the pre-existing magnetic
field, but there are some caveats. The non-resonant
streaming instability (Bell 2004, 2005) is predicted to be
the fastest to grow, and it might saturate on time-scales
shorter than the advection time in the precursor: reso-
nant (and also long-wavelength modes, see Bykov et al.
2011) modes may develop on top of the background pro-
vided by saturated short-scale modes. Dedicate PIC and

⌧
Btot

B0

�2

up

⇡ 3⇠crMA

Different flavors of CR-driven streaming instabilities 
(Amato & Blasi 2009; DC & Spitkovsky 2014b) 

Study how CRs diffuse in the self-generated 
turbulence Bohm-like diffusion (DC & Spitkovsky 2014c)



SN 1006: a parallel accelerator

B amplification and 
ion acceleration 

where the shock is 
parallel
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(a) Magnetic vectors

(b) Radial and fixed angle distributions

Fig. 7.— (a) Magnetic field orientation with respect to polar angle (polar-referenced angle).

The center of the polar coordinate system used to define the polar angle (local radial direc-

tion) is marked by a yellow cross at the center of SN 1006. The color scheme of the legend

is cyclic; blue represents both 90◦ and −90◦. A positive polar-referenced angle indicates a

counter-clockwise angular difference between magnetic vectors displayed in Fig. 3 and the

polar angle. (b) Magnetic field orientation with respect to the Galactic Plane and polar

angle. Red pixels are for vectors at a fixed angle of 60◦ (the direction of the Galactic Plane),

while green indicates vectors that are locally radial. In both cases, a tolerance of ±14◦ is

– 24 –

Fig. 4.— Fractional polarization p of SN 1006 at 1.4 GHz. The resolution is 10 arcsecs. The

color scale is shown at the right. Only pixels where p was at least twice its error were kept.

Reynoso et al. 2013

Inclination of B 
wrt to the  

shock normal

Polarization 
(low=turbulent 
high=ordered)

B0 X-ray emission: 
red=thermal 

white=synchrotron

Simulations of ion acceleration at shocks: DSA efficiency 17
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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DC & Spitkovsky, 2014a



Cosmic Wealth

12

We are 
the 1%

The top 1% carries ~one third  
of the total US wealth

Source: Wikipedia



How to Become Non-Thermal: the Injection Problem

What determines the fraction of particles that become CRs?
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3 golden rules of Real Estate:  
LOCATION,  
LOCATION,  
LOCATION!



Particle Injection - Simulations

in
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Thermal (E/E0<2)
Supra-thermal (2<E/E0<10)
Non-thermal (E/E0>10)

DC, Pop & Spitkovsky, 2015
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Encounter with the shock barrier

Low barrier (reformation)
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Ions advected downstream, 
and thermalized

|e%&| < mVx2/2

Vxaverage  
|e%&| |e%&| > mVx2/2 Vx

Ions reflected upstream, and  
energized via Shock Drift Acceleration

High barrier (overshoot) 

To overrun the shock, ions need a minimum Einj, increasing with $ (DC, Pop & Spitkovsky 15) 

Ion fate determined by barrier duty cycle (~25%) and shock inclination 

After N SDA cycles, only a fraction η∼ 0.25N has not been advected  

For $=45˚, Einj~10E0, which requires N~3 -> η~1% 

For $>45˚, Einj>10E0,  hence N>3 and η<<1% 
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Proton DSA: Summary
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Shock Acceleration can be efficient 

CRs amplify B via streaming instability 

DSA efficient at parallel, strong shocks 

Injection via specular reflection and 
shock-drift acceleration

85% Energy

~15% 
Energy
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What about other ions?



What if there are already  
energetic particles (seeds)?



Diffusive Shock Re-Acceleration
$=60o shock with isotropic seeds with ECR=3Esh ; nCR=0.01  (DC, Zhang, Spitkovsky, 2018) 

Seeds are effectively reflected at the shock, amplify the upstream B, and undergo DSA: DSRA!
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Seeds

Protons 

B-amplification opens up quasi-parallel patches  
at the shock where protons can be injected



Efficiency

Seed DSRA independent of $, about 
4x the initial CR energy density 

Absolute efficiency depends on seed energy density 

Also electrons can be reaccelerated! 

A ($<45o): Same proton efficiency 

(45o<$<70o): Boosted to few % 

C ($>70o): No proton DSA
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Seed DSRA

Proton DSA



Seeds

~E-4

Quasi-Perpendicular SEEDED Shocks
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$=80o quasi-perp shock with seeds ECR=3Esh    

Seeds diffuse but their spectrum is steeper than DSA  

Non-thermal protons only downstream

Protons 

New phenomena: 

I) Re-acceleration with non-universal (steeper) spectra 

II) Non-DSA proton acceleration: reconnection, second-order Fermi?



The Current in Reflected CRs
Depends on the fraction of reflected seeds, η, and their speed, vr

21



22

η and vr “magically” balance their 
dependence on $ and M exactly:  

          JCR= enCRVsh 

Easy explanation: CRs tend to 
become isotropic at the shock, in 
the shock frame: they become 
anisotropic in the upstream frame 

For SNRs and Galactic CRs: 

              Tstream inst~10yr   

Minimum level of B-amplification                                                                                                                                        
for shocks in the ISM

JCR [enCRVsh]

A Universal Current in Reflected CRs



What about electrons?



Ion vs Electron Injection
Ions injected by specular reflection  

Their magnetic moment W⊥=p⊥
2/B is 

not conserved:  the shock is evolving on 
their gyro-time! 

Electrons cannot be reflected by the shock 
potential barrier, but conserve their W⊥ 

∇B-drift + shock drift acceleration 

Electron injection requires oblique shocks!
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How can we have simultaneous 
acceleration of ions and electrons?



Electron Acceleration

Full PIC simulations (Tristan-MP code) M=20, Vsh=0.1c, quasi-parallel ($=30o) 1D shock

25

ElectronsIons

Park, DC & Spitkovsky 2015

Density

Self-generated B

Density

Ions

Electrons

Electrons
Ions

Electron/proton ratio Kep~0.01

Kep



Electron injection

Electron pre-heating via SDA 

DSA starts at the same pinj as for ions 
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Ion SDA

Ion DSA

ele SDA

ele DSA



What is the feedback of  
CRs on SNR evolution?



SNR Evolution in a Thin-Shell

Ejecta-dominated stage: Rsh~Vsh t  

Sedov-Taylor (adiabatic) stage: Rsh~t 2/5 

Radiative stage (Tsh<~106K) 

Pressure-driven snowplow (Phot>P0) 

Momentum-driven snowplow (Phot~P0)
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Phot P0

Msh

SNRs deposit energy and momentum in the interstellar medium 
Crucial for feedback that can suppress star formation! 

vSNR


