Dynamics of AGN bubbles and cosmic rays in cool core clusters

Kristian Ehlert, Christoph Pfrommer (AIP, Potsdam) Rainer Weinberger, Rüdiger Pakmor (HITS, Heidelberg) March 7, 2018

 energy source: release of non-gravitational energy due to accretion on a black hole and its spin

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- self-regulated heating mechanism to avoid overcooling

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- self-regulated heating mechanism to avoid overcooling
- jet interaction with magnetized cluster medium ⇒ turbulence

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- self-regulated heating mechanism to avoid overcooling
- jet interaction with magnetized cluster medium ⇒ turbulence
- jet accelerates CRs ⇒ release from bubbles provides source of heat

Evidence for CR acceleration in AGN shocks

Relativistic jet simulation (Perucho and Martí, 2007)

• missing pressure in lobes; at most 5-10% of pressure due to magnetic field & electrons

Evidence for CR acceleration in AGN shocks

Relativistic jet simulation (Perucho and Martí, 2007)

- missing pressure in lobes; at most 5 10% of pressure due to magnetic field & electrons
- \rightarrow significant CR proton population!

- Jacob and Pfrommer (2017a,b): study large sample of 40 cool-core clusters
- spherically symmetric steady-state solutions where cosmic ray heating balances cooling

Density profiles: Model & observations

Temperature profiles: Model & observations

Heating and cooling rates: Perseus

- real-life not steady state and 2D
- use 3D simulations
- focus on:
 - CR heating
 - magnetic field structure
 - parameter study of jet energy, luminosity, life time

AREPO: Jet injection region (Weinberger et al., 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential

AREPO: Jet injection region (Weinberger et al., 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field

AREPO: Jet injection region (Weinberger et al., 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field
- jet module with initial magnetic field
- Subgrid CR shock acceleration:

 $E_{\rm kin} \to E_{\rm cr}$

AREPO: Jet injection region (Weinberger et al., 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field
- jet module with initial magnetic field
- Subgrid CR shock acceleration: $E_{\rm kin} \rightarrow E_{\rm cr}$
- CR diffusion & Alfvén cooling

Heating and cooling rates: Steady-state model

CR-heating in Perseus (Jacob and Pfrommer, 2017a)

Heating and cooling rates: Simulation

steady-state model & simulation

Magnetic draping

Draping by Dursi and Pfrommer (2008)

Magnetic enhancement in the wake

Magnetic field structure

Magnetic field structure

Magnetic field structure

Jet morphology

CR distribution

Jet Mach numbers

20

- CR heating balances cooling in cluster centers
- Magnetic draping confines CRs and stabilizes bubbles
- Magnetic field in wake allows CRs to escape
- Simulated FRI & FRII jets in agreement with observations

- CR heating balances cooling in cluster centers
- Magnetic draping confines CRs and stabilizes bubbles
- Magnetic field in wake allows CRs to escape
- Simulated FRI & FRII jets in agreement with observations

Outlook

- simulations with cooling and accretion \rightarrow self-regulated evolution?
- cosmological simulations for more realistic environment

References

Dursi, L.J. and Pfrommer, C.: 2008, *ApJ* **677(2)**, 993 Jacob, S. and Pfrommer, C.: 2017a, *MNRAS* **467(2)**, 1449 Jacob, S. and Pfrommer, C.: 2017b, *MNRAS* **467(2)**, 1478 Perucho, M. and Martí, J.M.: 2007, *MNRAS* **382(2)**, 526 Weinberger, R. et al: 2017, *MNRAS* **470(4)**, 4530

Streaming cosmic rays

Scattered CR proton on magnetic field perturbations

- streaming instability
- CRs self-confined via scattering on CR-generated Alfvén waves: $\mathbf{v}_{st} \approx -\mathbf{v}_{A} \frac{\mathbf{b} \cdot \nabla P_{cr}}{|\mathbf{b} \cdot \nabla P_{cr}|}$
- transfer of CR to thermal energy via Alfvén wave damping:

$$\mathcal{H}_{\rm cr} = |\boldsymbol{v}_{\rm A}\cdot\nabla \mathcal{P}_{\rm cr}|$$

- CRs viable heating mechanism in CC clusters
- expected radio and $\gamma\text{-ray}$ emission consistent for CC clusters in feedback loop
- Limitations:
 - steady-state
 - isotropy
 - injection function for CRs

Bubble evolution

Bubble CRs

Jet morphology

