High-order MHD with Discontinuous Galerkin methods

 $\begin{array}{lll} \textbf{Thomas Guillet}^{1,2} & \mathsf{R}\ddot{\mathsf{u}}\mathsf{diger Pakmor}^2 & \mathsf{Volker Springel}^{1,2} \\ & \mathsf{Praveen Chandrashekar}^3 & \mathsf{Christian Klingenberg}^4 \end{array}$

¹Universität Heidelberg ²HITS ³TIFR Bangalore ⁴Universität Würzburg

Astro Shocks Workshop, AIP Potsdam, 6 March 2018

EXAMAG project: simulations of the magnetized Universe

- Numerical schemes for astro simulations
- ► HPC scalability for large-scale problems

High-order in AREPO AMR

SPPEXA

- Greater efficiency, scalability?
- First applications (soon)
 - MHD turbulence

This talk:

- DG & shocks/discontinuities
- Illustrative test problems

Schaal+2015

Discontinuous Galerkin ("DG") in a Nutshell

- Eulerian AMR mesh, cubic cells
- High-order solution description
 - ▶ polynomials of degree ≤ d
- Discontinuous Galerkin
 - discontinuous solution at faces
 - evolve polynomial coeffs

Key properties

- ► Error = O ((∆x)^{d+1}) for smooth solutions
- Discontinuous \rightarrow shock capturing
- Derivatives are local to cell
- AMR \rightarrow spatial dynamic range

DG Scheme: Basic Outline

$$\partial_t \boldsymbol{U} + \partial_i \boldsymbol{F}_i(\boldsymbol{U}) = 0; \qquad \boldsymbol{U} = (\rho, \rho \vec{v}, \boldsymbol{E}, \vec{B})$$

Polynomial expansion in each cell

- ► $\boldsymbol{U}(x,t) = w_{\beta}(t)\phi_{\beta}(x)$, polynomial ϕ_{β} , deg $(\phi_{\beta}) \leq d$
 - Legendre polynomials for ρ , $\rho \vec{v}$, E
 - Divergence-free vector polynomials for \vec{B}

Weak formulation

 L^2 projection onto ϕ_{eta} + integration by parts:

Explicit Runge-Kutta time integration w/ global timesteps

DG: Numerically and Computationally Efficient*

*For smooth enough problems. Talk to your doctor to know if high-order is good for you.

 Very efficient for smooth flows (e.g. subsonic turbulence)

DG: Numerically and Computationally Efficient*

*For smooth enough problems. Talk to your doctor to know if high-order is good for you.

- Very efficient for smooth flows (e.g. subsonic turbulence)
- ► Compute-intensive & local → scalability, efficient FP ops

Full DG Scheme: Many Moving Parts!

Shock Capturing: Orszag-Tang Vortex 3rd order scheme (d = 2)

Density

Magnetic pressure

Mach number

 512^2

 128^{2}

Density

Magnetic pressure

Mach number

DG Can Resolve Sharp Features: \vec{B} Field Loop

- Advected high- $\beta \vec{B}$ field loop
- Singular MHD current density \vec{i}

DG Can Resolve Sharp Features: \vec{B} Field Loop

- Advected high- $\beta \vec{B}$ field loop
- Singular MHD current density \vec{j}
- Shape of loop very well preserved
- Very little noise / ringing

DG-2, t = 2.0

DG Can Resolve Sharp Features: \vec{B} Field Loop

- Advected high- $\beta \vec{B}$ field loop
- Singular MHD current density \vec{j}
- Shape of loop very well preserved
- Very little noise / ringing
- High-order \rightarrow lower dissipation

DG-2, t = 2.0

MHD Shu-Osher shock tube, 128-256 cells

High-order can achieve greater effective resolution

Survives in presence of shocks

Handling Very Strong Shocks

- Magnetized Sedov-like blast in 3D, 3rd order scheme, 128^3
- ▶ Plasma- $\beta \sim 2 \times 10^{-4}$
- Pressure ratio $10^4 \rightarrow \text{very strong shock}$
- Positivity limiter is crucial

Reduced Advection Errors with MHD Shocks

DG-2 stationary

DG-2 advected

Difference

DG-3 stationary

DG-3 advected

Difference

Full DG Scheme: Many Moving Parts!

DG for Production Astrophysics Simulations?

Great promises / Increased complexity / How robust & flexible?

High-order methods

DG for Production Astrophysics Simulations?

Great promises / Increased complexity / How robust & flexible?

High-order methods

Astro/cosmo codes

DG for Production Astrophysics Simulations?

Great promises / Increased complexity / How robust & flexible?

High-order methods

Astro/cosmo codes

Conclusions

DG fulfills some promises...

- In AREPO: a first working DG-MHD scheme
- Large time-to-solution gains for smooth test problems
- Handles shocks, discontinuous solutions

...but method requires careful caretaking

- Oscillation detection & control (limiters)
- Divergence treatment

Beyond test problems: robustness & flexibility?

- Oscillation limiting for very general problems?
- Extreme dynamic range?
- Crazy, stiff source terms?