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EXAMAG project: simulations of the magnetized Universe
▶ Numerical schemes for astro simulations
▶ HPC scalability for large-scale problems

High-order in AREPO AMR
▶ Greater efficiency, scalability?
▶ First applications (soon)

▶ MHD turbulence
▶ B⃗ amplification

This talk:
▶ DG & shocks/discontinuities
▶ Illustrative test problems Schaal+2015
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Discontinuous Galerkin (“DG”) in a Nutshell

d= 0

d= 1

d= 2

d= 3

▶ Eulerian AMR mesh, cubic cells
▶ High-order solution description

▶ polynomials of degree ≤ d
▶ Discontinuous Galerkin

▶ discontinuous solution at faces
▶ evolve polynomial coeffs

Key properties
▶ Error = O

(
(∆x)d+1

)
for smooth solutions

▶ Discontinuous → shock capturing
▶ Derivatives are local to cell
▶ AMR → spatial dynamic range
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DG Scheme: Basic Outline

∂tU + ∂iFi(U) = 0; U = (ρ, ρ⃗v,E, B⃗)

Polynomial expansion in each cell
▶ U(x, t) = wβ(t)ϕβ(x), polynomial ϕβ, deg(ϕβ) ≤ d

▶ Legendre polynomials for ρ, ρ⃗v, E
▶ Divergence-free vector polynomials for B⃗

Weak formulation
L2 projection onto ϕβ + integration by parts:

∂t

∫
K

U · ϕβ︸ ︷︷ ︸
Weights evol

+

∫
∂K

Fi · ϕβni︸ ︷︷ ︸
Face fluxes

−
∫

K
Fi · ∂iϕβ︸ ︷︷ ︸

Internal fluxes

= 0;

∫
→

∑
︸ ︷︷ ︸

Gaussian quadrature

Explicit Runge-Kutta time integration w/ global timesteps
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DG: Numerically and Computationally Efficient⋆
⋆For smooth enough problems. Talk to your doctor to know if high-order is good for you.

Adapted from Bauer+2016

DG: 6.4× fewer DoF

Schaal+2015

▶ Very efficient for smooth flows
(e.g. subsonic turbulence)

▶ Compute-intensive & local
→ scalability, efficient FP ops

Inner quad points

Face quad points
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Full DG Scheme: Many Moving Parts!

MHD
Discontinuous

Galerkin

Basic
scheme
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Time
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system
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of p, ρ
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Shock Capturing: Orszag-Tang Vortex
3rd order scheme (d = 2)

Density Magnetic pressure Mach number

1282

Density Magnetic pressure Mach number

5122
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DG Can Resolve Sharp Features: B⃗ Field Loop

▶ Advected high-β B⃗ field loop
▶ Singular MHD current density j⃗

▶ Shape of loop very well preserved
▶ Very little noise / ringing

▶ High-order → lower dissipation
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Combined Smooth Flow & Shocks
MHD Shu-Osher shock tube, 128–256 cells
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▶ High-order can achieve greater effective resolution
▶ Survives in presence of shocks
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Handling Very Strong Shocks
▶ Magnetized Sedov-like blast in 3D, 3rd order scheme, 1283
▶ Plasma-β ∼ 2× 10−4

▶ Pressure ratio 104 → very strong shock
▶ Positivity limiter is crucial

log10 ρ
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Reduced Advection Errors with MHD Shocks

DG-2 stationary DG-2 advected Difference

DG-3 stationary DG-3 advected Difference
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Full DG Scheme: Many Moving Parts!
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DG for Production Astrophysics Simulations?
Great promises / Increased complexity / How robust & flexible?

High-order methods

Astro/cosmo codes
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Conclusions
DG fulfills some promises…

▶ In AREPO: a first working DG-MHD scheme
▶ Large time-to-solution gains for smooth test problems
▶ Handles shocks, discontinuous solutions

…but method requires careful caretaking
▶ Oscillation detection & control (limiters)
▶ Divergence treatment

Beyond test problems: robustness & flexibility?
▶ Oscillation limiting for very general problems?
▶ Extreme dynamic range?
▶ Crazy, stiff source terms?
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