

Shocks in protostellar outflows: observational constraints

Agata Karska

Center for Astronomy, Nicolaus Copernicus University in Torun, Poland

L. Kristensen, M. Kaufman, E. F. van Dishoeck, WISH, WILL and DIGIT teams

Low-mass protostars: laboratories of outflow shocks

Many nearby regions (<500 pc) driving large-scale outflows (up to ~pc) allow spatially-resolved observations

Low-mass protostars: laboratories of outflow shocks

Sub-mm / radio: I" ~ 500 AU

00 pc) driving large-scale outflows batially-resolved observations

Low-mass protostars: laboratories of outflow shocks

Far-IR: 10" ~ 5 000 AU

HH46 IRS

HH47 A

Many nea (up 1

Nisini+2015

HH47 C le outflows ations

Complexity of outflow shocks

Multiple shocks due to the action of narrow jets and wide-angle winds, complex 2D / 3D geometry

Shock models: 1D

Draine 80 Hollenbach 97

Shock's type depends on magnetic fields strength, shock velocity, density and level of ionization

Chemistry plug-in

Kaufman & Neufeld 1996 Flower & Pineau des Forets 2015

C - shocks

J - shocks

Line cooling dominated by H₂, H₂O and CO for typical densities n_{H2}~10³-10⁶ cm⁻³ and v_{sh}~10-40 km s⁻¹
Infrared line emission - a useful diagnostic of shocks

Utility of H₂O

Orders-of-magnitude variations in gas phase water abundances between cold and warm gas

Observational constraints

- I. Shock velocities
- 2. Densities of ambient medium
- 3. UV radiation
- 4. Magnetic fields (?)

Shock velocities

Broad far-IR H₂O line profiles due to bipolar outflows
Gas radial velocities ~10-50 km s⁻¹

Gas densities, shock type Herczeg, Karska+12

- Detections of highly excited CO and H_2O - Comparisons to line fluxes predicted by shock models

Single-source studies

	H ₂ O	CO	ОН	method
Ser SMM3 (Dionatos+13)	C shock, v~30 km/s, n~10 ⁴ cm ⁻³	J shock, v~20 km/s, n~10 ⁴ cm ⁻³	C shock, v~30 km/s, n~10 ⁴ cm ⁻³	best fit to rotational diagrams
L1448-MM (Lee+13)	C shock, v n~10 ⁵	C shock, v~40 km/s, n~10 ⁵ cm ⁻³		
L1448-R4 (Santangelo+12)	J shock, v~20 km/s, n~10 ⁵ cm ⁻³	-		HIFI line ratios
L1448-R4 (Santangelo+13)	C shock, v>20 km/s, n~10 ⁵ cm ⁻³			PACS line ratios
L1157 B1 (Benedettini+12)	-	<u>dissoc</u> . J shock, v>30 km/s n~10 ⁴ cm ⁻³ v>20 km/s n~10 ⁵ cm ⁻³		OI fluxes, O/CO & OH/CO
L1157 B1 (Busquet+14)	non-dissoc. J shock		-	cooling in H ₂ O lines

Real differences between sources or different approaches?

More robust comparisons

- uniform sample of sources, at the same distance - H_2O and high-J CO co-spatial, similar profiles - same component

Line ratios vs. shock models - excitation H₂O / H₂O CO / CO OH / OH

- Line ratios remarkably similar across the sample - Velocities > 20 km s⁻¹, pre-shock densities of $\sim 10^4$ - 10^5 cm⁻³

Line ratios vs. shock models - abundances

H_2O/CO H_2O/OH CO/OH

- Observed ratios with H₂O much lower than models
- UV photons needed to decrease the H_2O abundances

Missing H_2O and O_2

Santangelo+15, Kristensen+13,17 <u>Yildiz+14</u>, Chen+14, Melnick & Kaufman 15

- Low abundances of H_2O and O_{2} , high of ionic species - Arguments in favour of the presence of UV photons

- As FUV field is increased, T_{max} goes up As FUV field is increased,
 - available gas-phase oxygen goes up

As FUV is ightarrowincreased, post-shock gas is more dissociated

35

Melnick & Kaufman 15, see also Lesaffre+13

UV radiation

Karska, Kaufman+18

Herschel legacy of low-mass protostars: ~ 90 objects

$H_2O / CO \qquad H_2O / OH \qquad CO / OH$

- Irradiated C-shock models agree with observations for pre-shock log n \sim 5 and G0 \sim 0.1-10

- UV photons irradiate outflows and influence chemistry

Magnetic fields

ſychoniec, Tobin, Karska+2018

- Resolved radio jets from protostars with spectral indices in mm/cm tracing free-free and synchrotron emission

Cosmic-ray acceleration

- Combined radio and sub-mm data at 100 AU scales should soon shed light on the cosmic-ray acceleration in jets (see talk by M. Padovani)

Conclusions

- I. Infrared observations reveal ubiquitous slow shocks in outflows (v < 50 km s⁻¹) propagating in partly ionised, magnetised medium
- 2. UV photons influence the physics and chemistry of shocks even around low-mass protostars
- Current radio / sub-mm arrays starts to reveal the interaction between shocks and magnetic fields

The Toruń Astrophysics / Physics Summer program - TAPS

website: fizyka.umk.pl/taps

Deadline for applications: April 20, 2018 Contact: taps@fizyka.umk.pl

- Molecular Astrophysics
- Quantum Chemistry
- Density Functional Theory
- Positron Physics
- Biomedical Imaging
- Trapped Ion Techniques
- Light-Matter Interactions
- Quantum Communication
- Quantum Entanglement
- Quantum Non-Markovian Systems
- Nanophotonics
- Hybrid Nanostructures
- Optical Atomic Clocks and Ultracold Matter
- Data Analysis for Eyetracking
- Molecular Modelling of Biomolecules

UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU

Wydział Fizyki, Astronomii i Informatyki Stosowanej