

Astrophysical Shocks 2018

Binary System

• Two Massive Stars...

Binary System

- Two Massive Stars...
- ... each with line-driven wind outflow

Binary System

- Two Massive Stars...
- ... each with line-driven wind outflow

Results

- Supersonic massive wind outflows
- $\bullet~$ Interaction $\rightarrow~$ wind-collision region

Astrophysical Shocks 2018

Astrophysical Shocks 2018

Pshirkov 2016

- Fermi-LAT gamma-ray data for 7 binary candidates
- 7 years of Fermi-LAT data
- spatial agreement & detection only for WR 11

Pshirkov 2016

- Fermi-LAT gamma-ray data for 7 binary candidates
- 7 years of Fermi-LAT data
- spatial agreement & detection only for WR 11

TS map (2×2) deg

Pshirkov 2016

- Fermi-LAT gamma-ray data for 7 binary candidates
- 7 years of Fermi-LAT data
- spatial agreement & detection only for WR 11

Findings on WR 11

• Significance: $\sim 6\sigma$

TS map (2×2) deg 36 32 28 24 20 16 12 (Pshirkov (2016) MNRAS 457, 99)

Pshirkov 2016

- Fermi-LAT gamma-ray data for 7 binary candidates
- 7 years of Fermi-LAT data
- spatial agreement & detection only for WR 11

Findings on WR 11

- Significance: $\sim 6\sigma$
- photon count: $<10^3$
- no temporal variability found

Pshirkov 2016

- Fermi-LAT gamma-ray data for 7 binary candidates
- 7 years of Fermi-LAT data
- spatial agreement & detection only for WR 11

Findings on WR 11

- Significance: $\sim 6\sigma$
- photon count: $<10^3$
- no temporal variability found

Problem

- Theoretical Predictions
- Why only WR 11?

Emissivity of Different CWBs

	WR 11	η Carinae	WR 140	units
spectral type	WC8 + 07.4	WR? + LBV	WC7 + O8	
total kinetic power of winds	0.6 ¹	2.8 ²	6.1 ²	$10^{30}{\rm Js}^{-1}$
γ -ray flux (0.1 to 100 GeV)	$1.8{\pm}0.6^1$	184 ± 30^3	$< 1.1^1 \; / < 9.6^4$	$10^{-5} \tfrac{ph}{m^{-2}s^{-1}}$
orbital modulation	no^1	yes^5	-	
high-energy γ -ray luminosity	0.0037 ¹	7.8 ³	-	$10^{27}{\rm Js}^{-1}$
nonthermal radio luminosity	1.5^{2}	-	26 ²	$10^{22}{\rm Js^{-1}}$
		1	Pshirkov (2016) De Becker et al. (2013) Ferme LAT 4-Year Point Sourc Nerner et al. (2013) Reitberger et al. (2015)	e Cataloque

Astrophysical Shocks 2018

Motivation

	WR 11	η Carinae	WR 140	units
period	${\sim}80^{1}$	\sim 2024 2	$\sim 2900^3$	d
eccentricity	$\sim \! 0.3^4$	$\sim \! 0.9^5$	$\sim 0.9^3$	
distance	\sim 340 4	$\sim \! 2300^6$	$\sim 1800^7$	рс
stellar separation	170-340	330 - 6300	360 - 6700	R_{\odot}
mass loss primary	$\sim 2^1$	$\sim 2500^8$	$\sim 90^1$	$10^{-7}~{ m M}_{\odot}^-~{ m yr}^{-1}$
dominant wind	O,WR	LBV,WR	O,WR	

- ¹ van der Huch (2001)
- ² Corcoran et al. (2005)
- ³ Marchenko et al. (2003)
- ⁴ North et al. (2007)
- ⁵ Smith et al. (2004)
- ⁶ Davidson & Humphreys (1997)
- ⁷ Dougherty et al. (2005)
- ⁸ Pittard & Corcoran (2002)

	WR 11	η Carinae	WR 140	units
period	${\sim}80^{1}$	\sim 2024 2	$\sim 2900^3$	d
eccentricity	$\sim \! 0.3^4$	${\sim}0.9^5$	$\sim 0.9^3$	
distance	\sim 340 4	$\sim \! 2300^6$	$\sim 1800^7$	рс
stellar separation	170-340	330 - 6300	360 - 6700	R_{\odot}
mass loss primary	$\sim 2^1$	$\sim 2500^8$	$\sim 90^1$	$10^{-7} \ {\rm M_{\odot}^{-}} \ { m yr}^{-1}$
dominant wind	O,WR	LBV,WR	O,WR	

Motivation

• η Carinae: special case

¹ van der Huch (2001)

- ² Corcoran et al. (2005)
- ³ Marchenko et al. (2003)
- ⁴ North et al. (2007)
- ⁵ Smith et al. (2004)
- ⁶ Davidson & Humphreys (1997)
- ⁷ Dougherty et al. (2005)
- ⁸ Pittard & Corcoran (2002)

	WR 11	η Carinae	WR 140	units
period	${\sim}80^{1}$	\sim 2024 2	$\sim 2900^3$	d
eccentricity	$\sim \! 0.3^4$	$\sim \! 0.9^5$	$\sim 0.9^3$	
distance	\sim 340 4	$\sim \! 2300^6$	$\sim 1800^7$	рс
stellar separation	170-340	330 - 6300	360 - 6700	R_{\odot}
mass loss primary	$\sim 2^1$	$\sim 2500^8$	$\sim 90^1$	$10^{-7} \ {\rm M_{\odot}^{-}} \ { m yr}^{-1}$
dominant wind	O,WR	LBV,WR	O,WR	

Motivation

- η Carinae: special case
- WR 11 also special case?

¹ van der Huch (2001)

- ² Corcoran et al. (2005)
- ³ Marchenko et al. (2003)
- ⁴ North et al. (2007)
- ⁵ Smith et al. (2004)
- ⁶ Davidson & Humphreys (1997)
- ⁷ Dougherty et al. (2005)
- ⁸ Pittard & Corcoran (2002)

	WR 11	η Carinae	WR 140	units
period	${\sim}80^{1}$	\sim 2024 2	$\sim 2900^3$	d
eccentricity	$\sim \! 0.3^4$	${\sim}0.9^5$	$\sim 0.9^3$	
distance	\sim 340 4	$\sim \! 2300^6$	$\sim 1800^7$	рс
stellar separation	170-340	330 - 6300	360 - 6700	R_{\odot}
mass loss primary	$\sim 2^1$	$\sim 2500^8$	$\sim 90^1$	$10^{-7} \ {\rm M_{\odot}^{-}} \ { m yr^{-1}}$
dominant wind	O,WR	LBV,WR	O,WR	

Motivation

- η Carinae: special case
- WR 11 also special case?
- What determines visibility?
- CWBs as CR sources?

	WR 11	η Carinae	WR 140	units
period	${\sim}80^{1}$	\sim 2024 2	$\sim 2900^3$	d
eccentricity	$\sim \! 0.3^4$	${\sim}0.9^5$	$\sim 0.9^3$	
distance	\sim 340 4	$\sim \! 2300^6$	$\sim 1800^7$	рс
stellar separation	170-340	330 - 6300	360 - 6700	R_{\odot}
mass loss primary	$\sim 2^1$	$\sim 2500^8$	$\sim 90^1$	$10^{-7} \ {\rm M_{\odot}^{-}} \ { m yr^{-1}}$
dominant wind	O,WR	LBV,WR	O,WR	

Motivation

- η Carinae: special case
- WR 11 also special case?
- What determines visibility?
- CWBs as CR sources?
- \rightarrow Numerical model

¹ van der Huch (2001) ² Corcoran et al. (2005) ³ Marchenko et al. (2003) ⁴ North et al. (2007) ⁵ Smith et al. (2004) ⁶ Davidson & Humphreys (19 7 Dourberty et al. (2005)

⁸ Pittard & Corcoran (2002)

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution
- 2: Energetic Particles
 - Injection at Shocks
 - Solution of Parker transport equation

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution
- 2: Energetic Particles
 - Injection at Shocks
 - Solution of Parker transport equation

- 3: Non-Thermal Emission
 - Computation From Particle Spectra
 - Postprocessing

Astrophysical Shocks 2018

Stellar Winds

• Example: Hydrodynamics

System of Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = 0$$

$$\frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) = 0$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling

System of Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = 0$$

$$\frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) = S_e$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- \bullet Force density ${\bf f}:$
 - Gravity of stars
 - Radiative Driving

System of Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) &= \mathbf{f} \\ \frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) &= S_e + \mathbf{u} \cdot \mathbf{f} \end{aligned}$$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- Force density **f**:
 - Gravity of stars
 - Radiative Driving
- Radiative Driving:
 - Scattering off free electrons

System of Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = \mathbf{f}$$

$$\frac{\partial e}{\partial t} + \nabla \cdot ((e+p)\mathbf{u}) = S_e + \mathbf{u} \cdot \mathbf{f}$$

Effect of Electrons

$$\mathbf{g}_{rad,i}^{e} = \frac{\sigma_{e}L_{\star,i}}{4\pi r_{i}^{2}c} \mathbf{e}_{r_{i}}$$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- Force density **f**:
 - Gravity of stars
 - Radiative Driving
- Radiative Driving:
 - Scattering off free electrons
 - Line driving

System of Equations $\begin{aligned} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \\ &\frac{\partial\rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + p\mathbf{1}) = \mathbf{f} \\ &\frac{\partial e}{\partial t} + \nabla \cdot ((e+p)\mathbf{u}) = S_e + \mathbf{u} \cdot \mathbf{f} \end{aligned}$

Effect of Electrons $\mathbf{g}_{rad,i}^{e} = \frac{\sigma_{e}L_{\star,i}}{4\pi r_{i}^{2}c} \mathbf{e}_{r_{i}}$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Acceleration by Lines $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} kt^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Line Driving

- Contribution of $> 10^4$ lines
- Wind expansion \rightarrow Doppler shift \rightarrow Expensive

Line Driving

- $\bullet~{\rm Contribution}~{\rm of}>10^4~{\rm lines}$
- Wind expansion \rightarrow Doppler shift \rightarrow Expensive

Numerical Approximation

• Collective: power law

Resulting Acceleration

$$\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} k t^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$$

Astrophysical Shocks 2018

Line Driving

- Contribution of $> 10^4$ lines
- Wind expansion \rightarrow Doppler shift \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t

Resulting Acceleration $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r^{2}} k t^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

universität

Line Driving

- $\bullet~{\rm Contribution}~{\rm of}>10^4~{\rm lines}$
- Wind expansion \rightarrow Doppler shift \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t
- \rightarrow Velocity gradient

Resulting Acceleration $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} kt^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Optical Depth
$$t = \sigma_e \rho v_{th} \left| \frac{du}{dr} \right|^{-1}$$

universität

Line Driving

- $\bullet~{\rm Contribution}~{\rm of}>10^4~{\rm lines}$
- Wind expansion \rightarrow Doppler shift \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t
- \rightarrow Velocity gradient

Resulting Acceleration $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} k t^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Optical Depth
$$t = \sigma_e \rho v_{th} \left| \frac{du}{dr} \right|^{-1}$$

universität

Situation in WR 11

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

Situation in WR 11

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

Extreme cases

- $\bullet \ k, \alpha \leftrightarrow {\rm radiation} \ {\rm field}$
- $k, \alpha \leftrightarrow$ wind composition

Situation in WR 11

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

Extreme cases

- $k, \alpha \leftrightarrow \text{radiation field}$
- $k, \alpha \leftrightarrow$ wind composition

Situation in WR 11

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

- Collision before v_{∞} is reached
- What determines $k \& \alpha$?

- Radiative breaking
- Shadowing

Wind Properties in WR 11

Astrophysical Shocks 2018

Results

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - \underline{D}(\underline{E})\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \frac{\dot{E}_{\mathsf{loss}}}{J} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Energy loss processes

- Synchrotron (Electrons)
- Inverse Compton (Electrons)
- Thermal bremsstrahlung (Electrons)
- Coulomb losses
- Nucleon-nucleon interaction

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- \rightarrow Semi-Lagrangian solver

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\text{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- \rightarrow Semi-Lagrangian solver

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\text{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- ightarrow Semi-Lagrangian solver

Results

- Position-dependent particle flux
- $\rightarrow\,$ Can compute non-thermal emission

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

The Role of Spatial Diffusion

Particle Spectra

Energy-Loss and Acceleration Rates

Astrophysical Shocks 2018

Particle Acceleration

Resulting Particle Distribution

Resulting Particle Distribution

Maximum Particle Energies

Resulting Particle Distribution

Maximum Particle Energies

Magnetic Field & Electron Flux

Astrophysical Shocks 2018

Particle Acceleration

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\rightarrow p + p \rightarrow p + p + \pi^{0} \rightarrow \pi^{0} \rightarrow \gamma + \gamma$$

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\begin{array}{l} \rightarrow \quad p + p \rightarrow p + p + \pi^{0} \\ \rightarrow \quad \pi^{0} \rightarrow \gamma + \gamma \end{array}$$

Projection of Radiation

Properties of WR 11 $\,$

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\begin{array}{l} \rightarrow \quad p + p \rightarrow p + p + \pi^{0} \\ \rightarrow \quad \pi^{0} \rightarrow \gamma + \gamma \end{array}$$

Projection of Radiation

Astrophysical Shocks 2018

Integrated Particle Spectra

Conclusion

- WR 11: hadron accelerator
- Fit to data possible

- Investigation of WR 140, WR 147, & η Carinae
- New application: gamma-ray binaries