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decrease in spatial scale / increase in density 

• density

- density of ISM: few particles per cm3

- density of molecular cloud: few 100 particles per cm3

- density of Sun: 1.4 g /cm3

• spatial scale

- size of molecular cloud: few 10s of pc

- size of young cluster: ~ 1 pc

- size of Sun: 1.4 x 1010 cm
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decrease in spatial scale / increase in density 

• contracting force

-  only force that can do this compression 
 is GRAVITY

• opposing forces

-  there are several processes that can oppose gravity

-  GAS PRESSURE

-  TURBULENCE

-  MAGNETIC FIELDS

-  RADIATION PRESSURE

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth

Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



• Jeans (1902): Interplay between  
self-gravity and thermal pressure 
- stability of homogeneous spherical 

density enhancements against  
gravitational collapse 

- dispersion relation: 

- instability when  

- minimal mass:  
  

early theoretical models

Sir James Jeans, 1877 - 1946
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• von Weizsäcker (1943, 1951)  and  
Chandrasekhar (1951): concept of 
MICROTURBULENCE 
- BASIC ASSUMPTION: separation of  

scales between dynamics and turbulence 
lturb « ldyn 

- then turbulent velocity dispersion contributes 
to effective sound speed: 

- ! Larger effective Jeans masses ! more stability 
- BUT: (1)  turbulence depends on k: 
 
          (2) supersonic turbulence    !                       
usually 

first approach to turbulence

S. Chandrasekhar,  
1910 - 1995
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problems of early dynamical theory

• molecular clouds are highly Jeans-unstable, 
yet, they do NOT form stars at high rate  
and with high efficiency (Zuckerman & Evans 1974 conundrum) 
(the observed  global SFE in molecular clouds is ~5%)  
! something prevents large-scale collapse. 

• all throughout the early 1990’s, molecular clouds 
had been thought to be long-lived quasi-equilibrium 
entities. 

• molecular clouds are magnetized



• Mestel & Spitzer (1956): Magnetic 
fields can prevent collapse!!! 
- Critical mass for gravitational  

collapse in presence of B-field 

- Critical mass-to-flux ratio 
(Mouschovias & Spitzer 1976) 
  

- Ambipolar diffusion can initiate collapse

magnetic star formation 
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• BASIC ASSUMPTION: Stars form from  
magnetically highly subcritical cores 

• Ambipolar diffusion slowly  
increases (M/Φ): τAD ≈ 10τff 

• Once (M/Φ) > (M/Φ)crit : 
dynamical collapse of SIS 

•  Shu (1977) collapse solution 

•  dM/dt = 0.975 cs
3/G = const.  

• Was (in principle) only intended  
for isolated, low-mass stars

“standard theory” of star formation 

Frank Shu, 1943 -  

magnetic field



problems of “standard theory”

• Observed B-fields are weak, at most 
marginally critical (Crutcher 1999, Bourke et al. 
2001) 

• Magnetic fields cannot prevent decay of 
turbulence 
(Mac Low et al. 1998, Stone et al. 1998, Padoan & 
Nordlund 1999) 

• Structure of prestellar cores 
(e.g. Bacman  et al. 2000, Alves et al. 2001) 

• Strongly time varying dM/dt 
(e.g. Hendriksen et al. 1997, André et al. 2000) 

• More extended infall motions than 
predicted by the standard model 
(Williams & Myers 2000, Myers et al. 2000) 

• Most stars form as binaries 
(e.g. Lada 2006)

• As many prestellar cores as protostellar 
cores in SF regions (e.g. André et al 2002) 

• Molecular cloud clumps are chemically 
young  
(Bergin & Langer 1997, Pratap et al 1997, Aikawa 
et al 2001) 

• Stellar age distribution small (τff << τAD)  
(Ballesteros-Paredes et al. 1999, Elmegreen 2000, 
Hartmann 2001) 

• Strong theoretical criticism of the SIS as 
starting condition for gravitational 
collapse 
(e.g. Whitworth et al 1996, Nakano 1998, as 
summarized in Klessen & Mac Low 2004) 

• Standard AD-dominated theory is 
incompatible with observations  
(Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

 (see e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
Klessen & Glover, 2016, Saas Fee Lecture, 43, 85 )



• BASIC ASSUMPTION:   
  

star formation is controlled by interplay between 
supersonic turbulence and self-gravity  

• turbulence plays a dual role: 

- on large scales it provides support 

- on small scales it can trigger collapse 

• some predictions: 

- dynamical star formation timescale τff 

- high binary fraction 

- complex spatial structure of  
embedded star clusters 

- and many more . . .

gravoturbulent star formation

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
McKee & Ostriker, 2007, ARAA, 45, 565 

Klessen & Glover, 2016, Saas Fee Lecture, 43, 85)



• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• Navier-Stokes equation (transport of momentum) 

Re =
advection
dissipation

=
V L

⌫
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• putting all together, the momentum equation for ideal
gases in the absence of external forces, (2.24) or (2.20), but
with corrections from velocity gradients in non-equilibrium
systems to the stress-energy tensor (2.31), reads
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• the right-rand side of this equation can be simplified to
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• the left-hand side of (2.33) can be rewritten using the conti-
nuity equation (2.3),
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• we have now derived the transport equation for momen- see also Landau & Lifschitz, Vol.
6 “Hydrodynamics” §15tum in hydrodynamics, the Navier-Stokes equation:

⇢
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(2.36)

as expected, this simplifies to the Euler equation (2.24),

⇢
d~v
dt
= �~rP

for inviscid fluids, i.e. for ⌘ = ⇣ = 0;

 shear viscosity bulk viscosity 
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• we now examine how the symmetric and the antisymmet- the Levi-Civita tensor ✏i jk is the
totally skew-symmetric tensor
of rank 3; its values are

✏i jk =

8>>><
>>>:

1 even permutations of 123
�1 odd permutations of 123

0 some indices are equal

recall also that
@xl

@x j
= �l j

ric parts behave if the velocity field is caused by rigid rota-
tion,

~v = ~! ⇥ ~x , vi = ✏i jk! jxk , (2.26)

we see that the antisymmetric part turns into
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while the symmetric part vanishes; our tensor �i j there-
more must be symmetric;

• we go one step further and we split the tensor �i j into a
contribution from shear flows (with vanishing trace) which
deform the medium and a contribution from compression
(with vanishing off-diagonal elements);

• the trace of 1/2(@vi/@x j +@v j/@xi) simply is the divergence of
~v:

tr
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=
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and we can construct the trace-free residual, the shear ten-
sor, as
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• putting it all together, we obtain the most general form of
the viscous stress tensor,

�i j ⌘ ⌘
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where the coefficients ⌘ and ⇣ determine the relative impor-
tance of shear and compression to the viscous stresses in
the fluids; consequently, ⌘ is called shear viscosity coeffi-
cient (sometimes second viscosity) and ⇣ bulk viscosity co-
efficient; both are characteristics of the material under con-
sideration and can be determined experimentally;

• the corresponding the stress-energy tensor with contribu-
tions from velocity gradients is then

Ti j = ⇢viv j + P�i j � �i j , (2.31)

where the minus sign is conventional;

viscous stress tensor   

properties of turbulence



• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• vortex streching --> turbulence is intrinsically anisotropic  
(only on large scales you may get  
homogeneity & isotropy in a statistical sense;  
see Landau & Lifschitz, Chandrasekhar, Taylor, etc.) 
 
  
(ISM turbulence: shocks & B-field  
cause additional inhomogeneity) 

Re =
advection
dissipation

=
V L

⌫

properties of turbulence

Tornado over Portofino



•

lo
g 
E

log kL-1

•

•

ηK-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)

turbulent cascade in the ISM

• scale-free behavior of turbulence 
in the range 

• slope between -5/3 ... -2 
• energy “flows” from large to small 

scales, where it turns into heat 

  

€ 

L
ηK

≈ Re3/ 4

•

transfer



•

 molecular clouds 

σrms  ≈ several km/s 
Mrms > 10 
    L  > 10 pc

lo
g 
E

log kL-1

•

•

ηK-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)

supersonic

subsonic

so
ni

c 
sc

al
e

•

 massive cloud cores 

σrms  ≈ few km/s         
Mrms ≈ 5 
      L ≈ 1 pc 

•

dense  
protostellar  
cores 

σrms << 1 km/s          
Mrms ≤ 1    
     L ≈ 0.1 pc 

turbulent cascade in the ISM



• We use LES to model the large-scale dynamics  
• Principal problem: only large scale flow properties  
- Reynolds number: Re = LV/ν  (Renature >> Remodel) 
- dynamic range much smaller than true physical one 
- need subgrid model (in our case simple: only dissipation) 
- but what to do for more complex when  
   processes on subgrid scale determine  
   large-scale dynamics  
   (chemical reactions, nuclear burning, etc)  
- Turbulence is “space filling” --> difficulty  
   for AMR (don’t know what criterion to use 
   for refinement) 

• How large a Reynolds number do  
   we need to catch basic dynamics  
   right?

log E

L-1 ηK
-1

true dynamic range

dynamic range 
of model

log k

large eddie simulations - caveats!



• BASIC ASSUMPTION:   
  

star formation is controlled by interplay between 
supersonic turbulence and self-gravity  

• turbulence plays a dual role: 

- on large scales it provides support 

- on small scales it can trigger collapse 

• some predictions: 

- dynamical star formation timescale τff 

- high binary fraction 

- complex spatial structure of  
embedded star clusters 

- and many more . . .

gravoturbulent star formation

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
McKee & Ostriker, 2007, ARAA, 45, 565 
Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191



What happens to distribution of 
cloud cores?

Two exteme cases:  
(1)  turbulence dominates energy budget: 

α=Ekin/|Epot| >1  
--> individual cores do not interact  
--> collapse of individual cores  
     dominates stellar mass growth  
--> loose cluster of low-mass stars 

(2)  turbulence decays, i.e. gravity dominates: 
α=Ekin/|Epot| <1  
--> global contraction  
--> core do interact while collapsing  
--> competition influences mass growth  
--> dense cluster with high-mass stars 

Formation and evolution of cores



turbulence creates a hierarchy of clumps



as turbulence decays locally, contraction sets in



as turbulence decays locally, contraction sets in



while region contracts, individual clumps collapse to form stars



while region contracts, individual clumps collapse to form stars



individual clumps collapse to form stars



individual clumps collapse to form stars



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars

α=Ekin/|Epot| < 1



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars



in dense clusters, competitive mass growth  
becomes important 



in dense clusters, competitive mass growth  
becomes important 



•

•

in dense clusters, N-body effects influence mass growth



low-mass objects may 
become ejected --> accretion stops



feedback terminates star formation



result: star cluster, possibly with HII region



NGC 602 in the LMC: Hubble Heritage Image



• stars form from the complex interplay of self-gravity and a large number of 
competing processes (such as turbulence, magnetic fields, radiative and 
mechanical feedback, thermal pressure, cosmic rays, etc.) 

• the relative importance of these processes depends on the environment 

- prestellar cores --> thermal pressure is important 
molecular clouds --> turbulence dominates 

- massive star forming regions (NGC602): radiative feedback is important  
small clusters (Taurus): evolution maybe dominated by external turbulence   

• star formation is regulated by various feedback processes 

• star formation is closely linked to global galactic dynamics (KS relation)

current status

   (Larson’s relation: σ∝L1/2)}

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Simple theoretical approaches usually fail.  



comments o
n 

turbulen
ce



dilatational vs. solenoidal driving

compressive 
larger structures, higher ρ-contrast

rotational 
smaller structures, small  ρ-pdf

density as function of time / cut through 10243 cube simulation (FLASH)

Federrath, Klessen, Schmidt (2008a,b)



density pdf depends on 
“dimensionality” of driving 

relation between width of pdf and Mach 
number 

with b depending on ζ via 

with ζ being the ratio of dilatational vs. 
solenoidal modes:

Federrath, Klessen, Schmidt (2008a)

dilatational vs. solenoidal driving



density pdf depends on 
“dimensionality” of driving 
! is that a problem for the  
     Krumholz & McKee model  
     of the SF efficiency? 
density pdf of compressive driving is 
NOT log-normal 
! is that a problem for the  
     Padoan & Nordlund, or  
     Hennebelle & Chabrier  
     IMF model? 
most “physical” sources should be 
compressive (convergent flows from 
spiral shocks or SN)

Federrath, Klessen, Schmidt (2008b)

good fit needs 3rd and 4th moment of  
distribution!

dilatational vs. solenoidal driving



density power spectrum 
differs between dilatational 
and solenoidal driving! 
 
!  dilatational driving  
     leads to break at  
     sonic scale! 

can we use that to  
determine driving sources 
from  observations ?

Federrath, Klessen, Schmidt (2008b)

compensated density spectrum kS(k) shows 
clear break at sonic scale. below that shock 
compression no longer is important in shaping  
the power spectrum ... 

dilatational vs. solenoidal driving



caveat: really power law?

Konstandin et al. (2015, MNRAS, 446, 1775)

Bayesian analysis of the vel. power spectrum 1779

Figure 2. Test on synthetic data with a slope of −2 and time variation of 0.4 (indicated by the horizontal dash–dotted lines). The ordinate indicates estimates
of the group slope, from three different methods, over an extent of !k = 6, plotted with the centre value of k on the abscissa. We compare the Hierarchical
Bayesian, an unpooled LR to mimic hierarchical modelling with ordinary LR, and an ordinary LR applied to the spectra averaged in log space. With the former
two methods, we estimate the variation of the slope with time (dashed thin lines) as well as the uncertainty of the group slope (thick solid lines). The results of
the log-averaged LR is shifted slightly to the left, whereas these of the unpooled method are slightly shifted to the right for clarity. The creation of the synthetic
data and the employed methods are discussed in more detail in Section 2.5.

in the model, such that the fixed values in equations (19)–(26), e.g.
the group slope, is drawn from a normal distribution with mean
µ = 0 and σ 2 = 100. All values in equations (19)–(26) do affect
the number of samples until the MCMC method converges, but as-
suming sufficient sampling and that the ‘true’ values lie inside the
priors, they do not affect the end results of the Bayesian inference.
For a more detailed description of the construction of a Bayesian
model, we refer the reader to standard textbooks of statistical data
analysis (Gelman et al. 2004; Kruschke 2011; Wakefield 2013) or
recent publications using similar models (Kelly 2007; Shetty, Kelly
& Bigiel 2013; Shetty et al. 2014).

In summary, this Bayesian method explicitly treats the common
fitting issues mentioned in the last section. That is, variations of
the scaling exponents with time yield a larger variance of the group
slope. Fluctuations of the scaling exponents with k increase the
group scatter σ 2

!(tj ). Variations and uncertainties of the measured
data are also treated self-consistently. Both individual and also the
global parameters are estimated simultaneously, avoiding any data-
averaging. Since defining a fitting range introduces a large uncer-
tainty, we test the Bayesian model on synthetic data in the next
section, where we fit over a k range of seven points to obtain the
‘local‘ slope of the power spectrum.

2.5 Test with synthetic data

We verify the hierarchical Bayesian model with synthetic data and
compare it with normal LR methods. We create a synthetic data

set with 121 realisations according to the Bayesian model (equa-
tions 14–18), where the group intercepts, the slopes and the scatter-
precision follow distributions with mean values of (5, −2, 1000) and
standard deviations of (1, 0.4, 200). These parameters for creating
the synthetic data reflect the averaged behaviour of the measured
power spectra in log–log space, where we slightly overestimate the
variation in time. The synthetic data are distributed logarithmically
on the x-axis instead of homogeneously distributed, as we will apply
the methods in log–log space. Fig. 2 shows the slope measured in a
fitting range !k = 6 (with seven points) as a function of the point in
the centre of the fitting range for different methods. As we fixed the
size of the fitting range in linear space, its width is decreasing with k
in log space, which we will discuss further below. The hierarchical
model rigorously accounts for a number of uncertainties. The pos-
terior probability distribution function (PDF) contains the resulting
fit parameters, for both the group and the individuals. For example,
the width of the PDF, or highest density interval (HDI), of the group
slope and intercept yield the range in plausible parameters, consid-
ering the measurement uncertainty or insufficient statistics, caused
by fitting only seven points.

Fig. 2 shows estimates for two different parameters of the syn-
thetic data. The group slope of the spectra with a 2σ -HDI uncer-
tainty estimate, as well as the 1σ variation of the slopes with time
without an uncertainty estimate. The green circles correspond to
the Bayesian measurement of the group slope ζ (the mean value
in equation 16 and 20) and its 2σ -HDI interval (green, solid, thick
lines), whereas the grey, dashed, thin lines quantify the variations of

MNRAS 446, 1775–1783 (2015)

 at U
niversity H

eidelberg on D
ecem

ber 16, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



Konstandin et al. (2015, MNRAS, 446, 1775)

1780 L. Konstandin et al.

the slope in time using the maximum likelihood value of the stan-
dard deviation σζ in equations (16) and (21). To mimic hierarchical
modelling using a normal LR, we perform a fit on each individ-
ual time realization and collect the slopes and error estimates in
two histograms. The mean value of the resulting histogram with
121 error estimates gives a measurement of the averaged error of
the fits (yellow, solid, thick lines). The mean value of the resulting
histogram with 121 slopes provides an estimate of the group slope
(blue squares) and its 1σ -HDI measures the variation in time (blue,
dashed, thin lines). We refer to this method as ‘LR-unpooled’ fur-
ther below, as it does not average the power spectra of the different
time snapshots. The red crosses correspond to a normal LR method
applied to the spectra averaged in log space.

All methods in Fig. 2 have a comparable accuracy for estimating
the maximum likelihood slope, which does not depend on the scale
in the shown range, whereas the error estimates are significantly
different. With normal LR applied to the log-averaged spectra, in
nearly all cases (71 per cent) the true slope lies outside the error
interval (the red crosses are in most cases larger than the uncertainty
intervals). Alternatively, the error estimates of the unpooled LR
(yellow, solid, thick) contain the correct value in all but one case,
and the Bayesian method (green, solid, thick) contain the correct
value in 92 per cent of all cases. The uncertainty interval of the
unpooled LR should contain the correct value in 68 per cent = 1σ ,
as we calculate it with the mean value of the histogram of the
individual errors. It increases systematically with k, which is due to
an interplay of the decreasing width of the fitting range with k in log
space and the increasing importance of the scatter with k, making
this method impractical for a high-precision measurement of the
scaling exponent of the power spectrum. On the other hand, both the
unpooled LR model (blue, dashed, thin) as well as the hierarchical
Bayesian model (grey, dashed, thin) recover the variation with time
of the group slope of ±0.4.

Fig. 2 indicates that the regression method can have a major in-
fluence on the results, especially the error estimate, and should be
chosen carefully. The ordinary LR applied to the averaged spectrum
stands out negatively, as its error estimate of the mean slope totally
fails. The implementation of a method to mimic hierarchical mod-
elling using a normal χ2-LR can recover the time variation of the
group slopes, but its measurement of the averaged error between the
individuals cannot be used to quantify the uncertainty of the group
slope, as it strongly depends on the scale k and gets too large to dis-
tinguish between the different theoretical models. This is caused by
an interplay of two effects. First, as we assume a fixed distribution
for the scatter the relative importance of the scatter increases with
k, which the unpooled LR cannot handle. Secondly, as we fix the
fitting range in linear space, but fit in log–log space the effective
width of the fitting range decreases with k, influencing the error
estimate for the unpooled LR method. The Bayesian method, on
the other hand, recovers all information about the slope with a high
precision and valid error estimates.

3 R ESULTS

Fig. 3 shows the total spectra for solenoidal (orange) and com-
pressive (purple) forcing, compensated with k2, and for the simula-
tion with 10243 resolution. It clearly indicates that the compressive
forcing yields a spectrum following the Burgers prediction over
an extended range, whereas the solenoidal forcing yields a curved
spectrum. The bump of energy at intermediate scales k ≈ 20–40 is
caused by a phenomenon normally known as the bottleneck effect
(e.g. Dobler et al. 2003; Schmidt, Hillebrandt & Niemeyer 2006;

Donzis & Sreenivasan 2010). We will discuss its influence on the
spectra in detail further below using the Bayesian estimate of the
scaling exponent.

Next, we test how the extent of the fitting range influences the
measured scaling exponents. We do this on the measured spec-
tra instead of synthetic data and therefore use the simulation with
solenoidal forcing and 10243 resolution. Fig. 4 shows the measured
group slope ζ (k) as a function of the centre of the fitting range k
for three different widths of the fitting range $k = 2, 6, 10 (thereby
including 3, 7, 11 points). Increasing the fitting range decreases the
uncertainty in the measured scaling exponent. It also averages the
high-frequency scatter out, without changing the global function-
ality on k. On low k values the measurements with small fitting
windows estimate steeper slopes. But this is not a systematic er-
ror included by the small fitting ranges. It can be explained by the
changing slopes of the power spectra in the given ranges. We indi-
cate the k ranges of the different fitting windows on the first point
of each measurement as a horizontal dashed line. The fitting ranges
of all measurements start at k = 4, where the forcing routine has no
direct influence anymore. Fig. 4 shows that the spectrum is strongly
curved with a steep area at low wave numbers and gets systemati-
cally shallower with increasing k. So the steep part at small scales

Figure 3. Total spectra for solenoidal (orange) and compressive (purple)
forcing, compensated with k2, and 10243 resolution.

Figure 4. Measured Local Group slope of the Bayesian method as a
function of the window centre k for three different fitting window sizes
$k = 2, 6, 10 (red, orange, green) performed on the total spectrum of the
simulation with 10243 grid points and solenoidal forcing.
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the slope in time using the maximum likelihood value of the stan-
dard deviation σζ in equations (16) and (21). To mimic hierarchical
modelling using a normal LR, we perform a fit on each individ-
ual time realization and collect the slopes and error estimates in
two histograms. The mean value of the resulting histogram with
121 error estimates gives a measurement of the averaged error of
the fits (yellow, solid, thick lines). The mean value of the resulting
histogram with 121 slopes provides an estimate of the group slope
(blue squares) and its 1σ -HDI measures the variation in time (blue,
dashed, thin lines). We refer to this method as ‘LR-unpooled’ fur-
ther below, as it does not average the power spectra of the different
time snapshots. The red crosses correspond to a normal LR method
applied to the spectra averaged in log space.

All methods in Fig. 2 have a comparable accuracy for estimating
the maximum likelihood slope, which does not depend on the scale
in the shown range, whereas the error estimates are significantly
different. With normal LR applied to the log-averaged spectra, in
nearly all cases (71 per cent) the true slope lies outside the error
interval (the red crosses are in most cases larger than the uncertainty
intervals). Alternatively, the error estimates of the unpooled LR
(yellow, solid, thick) contain the correct value in all but one case,
and the Bayesian method (green, solid, thick) contain the correct
value in 92 per cent of all cases. The uncertainty interval of the
unpooled LR should contain the correct value in 68 per cent = 1σ ,
as we calculate it with the mean value of the histogram of the
individual errors. It increases systematically with k, which is due to
an interplay of the decreasing width of the fitting range with k in log
space and the increasing importance of the scatter with k, making
this method impractical for a high-precision measurement of the
scaling exponent of the power spectrum. On the other hand, both the
unpooled LR model (blue, dashed, thin) as well as the hierarchical
Bayesian model (grey, dashed, thin) recover the variation with time
of the group slope of ±0.4.

Fig. 2 indicates that the regression method can have a major in-
fluence on the results, especially the error estimate, and should be
chosen carefully. The ordinary LR applied to the averaged spectrum
stands out negatively, as its error estimate of the mean slope totally
fails. The implementation of a method to mimic hierarchical mod-
elling using a normal χ2-LR can recover the time variation of the
group slopes, but its measurement of the averaged error between the
individuals cannot be used to quantify the uncertainty of the group
slope, as it strongly depends on the scale k and gets too large to dis-
tinguish between the different theoretical models. This is caused by
an interplay of two effects. First, as we assume a fixed distribution
for the scatter the relative importance of the scatter increases with
k, which the unpooled LR cannot handle. Secondly, as we fix the
fitting range in linear space, but fit in log–log space the effective
width of the fitting range decreases with k, influencing the error
estimate for the unpooled LR method. The Bayesian method, on
the other hand, recovers all information about the slope with a high
precision and valid error estimates.

3 R ESULTS

Fig. 3 shows the total spectra for solenoidal (orange) and com-
pressive (purple) forcing, compensated with k2, and for the simula-
tion with 10243 resolution. It clearly indicates that the compressive
forcing yields a spectrum following the Burgers prediction over
an extended range, whereas the solenoidal forcing yields a curved
spectrum. The bump of energy at intermediate scales k ≈ 20–40 is
caused by a phenomenon normally known as the bottleneck effect
(e.g. Dobler et al. 2003; Schmidt, Hillebrandt & Niemeyer 2006;

Donzis & Sreenivasan 2010). We will discuss its influence on the
spectra in detail further below using the Bayesian estimate of the
scaling exponent.

Next, we test how the extent of the fitting range influences the
measured scaling exponents. We do this on the measured spec-
tra instead of synthetic data and therefore use the simulation with
solenoidal forcing and 10243 resolution. Fig. 4 shows the measured
group slope ζ (k) as a function of the centre of the fitting range k
for three different widths of the fitting range $k = 2, 6, 10 (thereby
including 3, 7, 11 points). Increasing the fitting range decreases the
uncertainty in the measured scaling exponent. It also averages the
high-frequency scatter out, without changing the global function-
ality on k. On low k values the measurements with small fitting
windows estimate steeper slopes. But this is not a systematic er-
ror included by the small fitting ranges. It can be explained by the
changing slopes of the power spectra in the given ranges. We indi-
cate the k ranges of the different fitting windows on the first point
of each measurement as a horizontal dashed line. The fitting ranges
of all measurements start at k = 4, where the forcing routine has no
direct influence anymore. Fig. 4 shows that the spectrum is strongly
curved with a steep area at low wave numbers and gets systemati-
cally shallower with increasing k. So the steep part at small scales

Figure 3. Total spectra for solenoidal (orange) and compressive (purple)
forcing, compensated with k2, and 10243 resolution.

Figure 4. Measured Local Group slope of the Bayesian method as a
function of the window centre k for three different fitting window sizes
$k = 2, 6, 10 (red, orange, green) performed on the total spectrum of the
simulation with 10243 grid points and solenoidal forcing.
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Bayesian analysis of the vel. power spectrum 1781

Figure 5. Local group slope as a function of the centre of the fitting window k with a size of !k = 6 applied to the total (left), transverse (middle),
and longitudinal (right) spectra of the simulations with 5123, 10243 resolution (red/orange and blue/purple), solenoidal (upper panels) and compressive
(bottom panels) forcing. The grey error bars indicate the time variation of the slope at each k for the 10243 simulations. The horizontal dotted lines indicate
Kolmogorov −5/3 scaling and a Burgers −2 scaling behaviour.

k ≈ 5 influences the first measurement of the !k = 10 curve at k = 9
(first green measurement), whereas the measurement with !k = 2
at k = 9 is only influenced by the slope in k ∈ (8:10) and is therefore
systematically shallower (fifth red point). Fig. 4 indicates that the
scaling exponents of the solenoidal run span the whole range of
theoretical predictions in the scale range k ∈ (5:15).

Fig. 5 shows the Local Group slope measured with window size
!k = 6 as a function of the centre of the fitting range k for solenoidal
(upper panels) and compressive forcing mechanism (bottom pan-
els), each for different resolutions 5123 and 10243 (red/orange and
blue/purple, respectively), and from left to right the local slope of
the total, transverse and longitudinal decomposed spectra. The grey
error bars indicate the time variation of the slope at each k only
for the 10243 simulations. As we measure k in units of 2π/L with
constant L for different resolution, the spectra should overlap on
the large scales (low k). The spectra with 5123 and 10243 resolution
deviate from each other already on the large scales, indicating that
they are not converged with resolution. All spectra are curved in
the displayed range with a slope of ≈−2 at large scales close to the
forcing routine, a shallow area at intermediate scales, and system-
atically decreasing slopes in the range, where the numerical dissi-
pation can no longer be neglected. This ‘bump’ is more pronounced
for the transverse spectra than for the longitudinal and is still in-
creasing with resolution. Its peak appears for solenoidal forcing on
larger scales and with shallower slopes than for compressive forc-
ing. The longitudinal spectrum in the simulation with compressive
forcing is the only case with a constant slope over an extended range
k ∈ (10:32), which corresponds to 102, 32 grid cells. Applying the
Bayesian model to this range produces a group slope ζ = −1.94
with the small 2σ -HDI [ −1.95:−1.93] and a standard deviation for
the time variations σζ = 0.04. The simulation data indicate large
temporal variations of the slopes ζ with variance σζ ≈ 0.1−0.2
(grey error bars in Fig. 5) for a window size of !k = 6, which is
independent of the forcing, k scale, and the mode of the analysed

Figure 6. Same as in the left, upper panel of Fig. 5. In addition, we show the
estimates of the slope in the individual times t ∈ (3, 4, 5, 6)[T] to illustrate the
high time variation. We provide only the uncertainty interval of the t = 3[T]
individual slope estimation and skip these for the other times for clarity.

spectra. Increasing the fitting range decreases the temporal fluctua-
tions (compare with the fit results k ∈ (10:32) for the longitudinal
spectrum and compressive forcing stated above). Fig. 6 shows the
same as the left, upper panel of Fig. 5, but in addition it provides
the estimates of the individual slopes at the times t ∈ (3, 4, 5, 6)[T]
to illustrate the fluctuations of the slope ζ for different times.

3.1 Discussion and interpretation

The measurements show that the power spectra are curved and not
converged at a resolution of 5123 and 10243 grid cells. An accu-
mulation of kinetic energy just before the dissipation wavenumber
is a phenomenon called ‘bottleneck effect’ (e.g. Dobler et al. 2003;
Schmidt et al. 2006; Donzis & Sreenivasan 2010). We interpret the
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what drives ISM turbulence?

● seems to be driven on large scales, little 
difference between star-forming and non-SF 
clouds 
---> rules out internal sources  

● proposals in the literature 
● supernovae 
● expanding HII regions / stellar winds / outflows 
● spiral density waves 
● magneto-rotational instability 
● accretion onto disk
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Radiative	MHD
• Radiation
• Density
• Temperatures
• Chemistry
• Dust

Cloudy
•Radiative	fluxes
•Complex	Chemistry
•Multi-phase	ISM
•Subgrid IF/PDRs

•Excitation
• Ion
•Atomic
•Molecular

POLARIS
•Ray	tracing
•Monte	Carlo	of	
diffuse	
emission	

•Polarization

OptimizedPostprocessing IterativeApproach toEmissivitieS – V1

O
PIATE:	RM

H
D
	to	CLO

U
D
Y

O
PIATE:	CLO

U
D
Y	to	PO

LARIS

OPIATE	translates	local	gas	conditions	of	RMHD	into	reduced	CLOUDY	input
Provides	new	modules	to	Converts	CLOUDY	results	of	local	gas	into	POLARIS	input	(or	RADMC3D)
General	frame	work	to	provide	a	1:1	match	of	simulations,	microphysics	and	ray	tracing
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MHD

Simulation

•Gas	density

•Radiation	transport	between	cells

•Chemical	composition

OPIATE	+

CLOUDY	+

Mappings

•Emissivity	and	level	population	of	all	ISM	phase

•(Abel+05;	Pellegrini+07)

• H+,H0,H2

•O+,O2+,O3+,	etc.

•C+,C0,	CO,	etc.	

•Full	spectral	predictions	– Dust,	X-rays,	attenuated	stellar	

•Shocked	gas	(collisional	ionization	+	fast	shocks)

Visualization

•POLARIS

•RADMC	3D	– Optical	depth

•Sam	Geen

OptimizedPostprocessing IterativeApproach toEmissivitieS

Functions	to	provided	for	Beginning-to-End	processing	of	simulations		
Resulting	multi-line	fitsCubes	directly	comparable	with	velocity	resolved	IFU	data	
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Simulation
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•Full	spectral	predictions	– Dust,	X-rays,	attenuated	stellar	

•Shocked	gas	(collisional	ionization	+	fast	shocks)
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•Sam	Geen

OptimizedPostprocessing IterativeApproach toEmissivitieS

Functions	to	provided	for	Beginning-to-End	processing	of	simulations		
Resulting	multi-line	fitsCubes	directly	comparable	with	velocity	resolved	IFU	data	

5. Attachments (Figures)

Fig. 2 (left): The proposed 20 galaxies on the galaxy 
main-sequence plane. These galaxies uniformly sample 
the local star forming populations as traced by the S4G 
sample of nearby galaxies

Fig. 1 (above): Optical DSS images (greyscale) and 
ALMA maps (color) of our galaxy sample with the 
MUSE proposed pointings (cyan) and archival pointings 
(red) overlaid. The 17 galaxies where the ALMA data 
were obtained by our PHANGS collaboration have red 
bounding boxes (data for NGC1566 and NGC1512 are in 
the process of being delivered to us). The remaining 3 
galaxies have archival ALMA data. All MUSE and 
ALMA archival data will be publicly available within a 
year.
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Fig. 3: First comparison between synthetic observation of an simulated HII region complex (SILCC; top row)
and that extracted from the MUSE observation of NGC 628 (PI: Kreckel, Blanc; bottom row). Data cubes
produced from synthetic observations of SILCC using the new OPIATE software (Pellegrini et al. in prep.) can
be directly compared with MUSE data cubes to test the input physics. The SILCC simulation also contains
time-domain information. Only one snapshot is presented here. Mock data from simulations of entire galactic
disks will be generated by coIs Glover, Klessen and Emsellem.

- 5 -

ga
la

ct
ic

 c
en

te
r

O
PI

AT
E 

po
st

pr
oc

es
si

ng



Polaris  
RT tool

Polaris website in Kiel: http://www1.astrophysik.uni-kiel.de/~polaris/

— MC dust heating: Combined heating  
    algorithm of continuous absorption and  
     immediate temperature correction
— Grid: Octree-grid with adaptive refinement
— Polarization mechanism: Dichroic extinction,  
     thermal reemission, and scattering
— Dust grain alignment mechanisms:
    — Imperfect Davis-Greenstein (IDG) 
    — Radiative torques (RAT)
    — Mechanical alignment (GOLD)
    — Imperfect internal alignement
    — Independent dust grain composition
— Optimization: Enforced scattering,  
     wavelength range selection, and modified  
     random walk
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Polaris website in Kiel: http://www1.astrophysik.uni-kiel.de/~polaris/
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1D cloud/cluster model
WARPFIELD:	
• 1D	model	of	cluster	
embedded	in	spherical	
cloud	

• starburst99	cluster	
evolution	

• dynamics	of	think	shell	is	
calculated	consistently	

• with	all	relevant	forms	of	
stellar	feedback	

• fast,	allowing	for	large	
parameter	studies	

Rahner et al. (2017, MNRAS, 470, 4453)  



1D cloud/cluster model
WARPFIELD:	
• 1D	model	of	cluster	
embedded	in	spherical	
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• starburst99	cluster	
evolution	

• dynamics	of	think	shell	is	
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• with	all	relevant	forms	of	
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Figure 5. Comparison of relative forces from direct and indirect radiation
pressure, winds, SNe, and gravity. If the contribution from gravity is above
the 50 per cent margin (dashed horizontal line), the shell loses momentum.
Top: Mcl = 105 M⊙, ϵ = 0.1, Z = Z⊙, and ncl = 1000 cm−3 (same param-
eters as in Fig. 3). The contribution from indirect radiation pressure fraction
is so small, it is barely visible (<1 per cent). Bottom: same ncl and Z as in
the top panel, but with a higher cloud mass and star formation efficiency
(Mcl = 3 × 107 M⊙ and ϵ = 0.25). For more information see Section 5.

and increasing the coupling of radiation. If instead of a fixed cluster
mass, ϵ is kept constant, the same arguments applies, albeit in a
somewhat weakened form as the cluster mass and its feedback
also increase as we increase the cloud mass. In summary, radiation
coupling is stronger in massive clouds, explaining the positive sign
of b.

5 W H I C H T Y P E O F F E E D BAC K D O M I NAT E S ?

Now that we have quantified radiation coupling, we can start answer-
ing the question ‘Which type of feedback dominates?’ When asking
this, it is crucial to distinguish between the instantaneous and the
cumulative effect of feedback. The current density/chemical struc-
ture of the ISM is a bellwether of instantaneous feedback, while
cumulative feedback is traced by shell dynamics.

Instantaneous feedback, as measured by its exerted force, is
highly time-dependent. It is therefore necessary to specify what
evolutionary stage one is interested in. To demonstrate this, we
show in Fig. 5 for two examples the relative contributions from the
various forces influencing the shell. These are the forces associated
to winds and SNe, Fwind and FSN, direct and indirect radiation pres-
sure, Fdirect and Findirect, as well as gravity Fgrav (cf. Section 2.1.2).
To allow easy comparison between the various terms, the forces are
normalized to their sum, Ftot = Fwind + FSN + Fdirect + Findirect +
Fgrav. The feedback term that dominates at a given time t can be read
off from the vertical width in Fig. 5. Note that here for the sake of
comparison, gravity receives a positive sign. Therefore, if Fgrav/Ftot

< 0.5, the shell gains momentum, otherwise it loses momentum.
During the adiabatic phase, the force associated to thermal pressure
from shocked winds Fhot is the only force we consider in our model.

Before we discuss the importance of the different feedback terms,
it is also instructive to consider the integrated forces. The momen-
tum pinjected by the various feedback terms (or removed in case

Figure 6. Comparison of momentum pdeposited by the various feedback
terms. The red line labelled ‘hot’ corresponds to feedback from hot shocked
wind material during the adiabatic phase, the other terms are as in equation
(5), i.e. ram pressure in blue, radiation pressure in yellow, and gravity, which
has a negative contribution, in black. The parameters of the clouds examined
in the two panels are the same as in Fig. 5.

of gravity) up to a time t can be calculated via

pi(t) =
t∫

0

Fi dt ′, (31)

where the index i stands for the particular feedback term (wind, SN,
etc.). The net momentum of the shell is pnet = phot + pwind + pSN

+ pdirect + pindirect − pgrav. The evolution of pis shown in Fig. 6 for
the same models as in Fig. 5.

During Phase I, gas pressure from hot winds is the only source
driving the shell (cf. Fig. 5), but as soon as the shell enters Phase
II, this force is shut off so that phot remains constant. After the
adiabatic phase, direct radiation pressure becomes the main driving
force until at t ∼ 2–3 Myr first momentum from winds and then
from SNe starts to dominate the feedback budget. At the end of
the simulation, the cumulative contribution from direct radiation
pressure equals that from wind ram pressure in the case of the low-
mass cloud (Fig. 6, top panel) and exceeds the contribution from
wind ram pressure by a factor of 1.5 in the case of the high-mass
cloud with higher star formation efficiency (Fig. 6, bottom panel).
In the low-mass cloud case shown, the absorption fraction drops
rapidly after 3 Myr (cf. Fig. 3) making radiation pressure a very
ineffective feedback process at late times. This coincides with the
death of massive stars marking a reduction in wind feedback and
an increase in ram pressure from SNe. This additional pressure is
not sufficient to raise the shell density, leading to a weak coupling
between radiation and the swept-up ISM.

Although SNe become the main driving force at late times, the
momentum injected by them over the whole simulation time is
lower than that injected by winds or direct radiation pressure, albeit
still of the same order of magnitude. In massive clouds, the relative
importance of SNe is lower than in less massive clouds, as the
exerted force associated with direct radiation pressure remained
comparable with the force from SN feedback for a long time span.

MNRAS 470, 4453–4472 (2017)Downloaded from https://academic.oup.com/mnras/article-abstract/470/4/4453/3871372/Winds-and-radiation-in-unison-a-new-semi-analytic
by UB Heidelberg user
on 14 September 2017
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1D cloud/cluster model
Polaris:	
• detailed	dust	scattering	
and	absorption	model	

• 120	frequency	bin	
• Monte	Carlo	RT		

A&A proofs: manuscript no. paper
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Fig. 2: Left panels: Size averaged cross section of extinction Cext, scattering Csca, absorption Cabs, and pressure Cpr over wave-
length. Right panels: Probability distribution of re-emitted wavelength for di↵erent dust temperatures. Di↵erent rows are for distinct
maximum grain radii corresponding to the dust grain models D1 (top row), D3 (middle row), and D5 (bottom row).

neglected at � > 1 µm, so extinction as well as the radiative pres-
sure cross section are completely dominated by the absorption
behavior of the dust. Since a wavelength of 1 µm corresponds to
a temperature of Td ⇡ 2900 K and most of the dust embedded
in a molecular cloud can be expected to be much cooler, the ra-

diative force quickly becomes irrelevant in an environment with
such a narrow dust grain size distribution. Keeping the total dust
mass constant while redistributing the grain sizes towards larger
dust grains results in an increase of the scattering cross section.
For a upper dust grain radius of amax = 2.0 µm (D3, Figure 2
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1D cloud/cluster model
Polaris:	
• detailed	dust	scattering	
and	absorption	model	

• 120	frequency	bin	
• Monte	Carlo	RT	

—>	for	Milky	Way	clouds,	
							radiation	pressure	is	
							not	dominating	over	
							gravity!

Reissl et al. (2018, A&A in press, 
arXiv171002854)

Stefan Reissl et al.: Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust
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Fig. 5: Gravity (Fgra, red lines) in comparison to radiative forces (Frad, blue lines) for models M4 (top left), M5 (top right left), M6
(bottom left), and M7 (bottom right). The ratio of forces is defined as ⇣ = Frad/Fgra (purple lines). All cases have a constant dust
temperature of Td = 20 K, an outer radius of Rout = 5 pc and use dust model D2. Note that ⇣ < 1 everywhere, implying that radiation
pressure does not support the cloud against gravitational contraction. The vertical black line marks the sublimation radius.

gravitational force, mostly by factors of ⇣ ⇠100 or more, only
reaching even as high as ⇣ ⇠ 0.1 for the 107 M� cloud M7.

Figure 5 shows that gravitational force scales similarly with
cloud and cluster masses. A similar scaling also holds for the ra-
diative force, although there are also marked di↵erences in the
overall radial profiles. This results from the strong radial varia-
tions in the numbers of scattering and absorption events for the
di↵erent cloud and cluster models, as we discuss in more de-
tail below. We find that higher mass clouds have a larger radius
within which scattering is still relevant, while the maximum of
absorption and re-emission events remains at the same distance.
As a consequence the radiative force declines less steeply with
radius. This can lead to a distinct bulge, as in model M5 between
0.02 pc and 0.1 pc, or even to a complete flattening of the ra-
diative force out to radii of ⇠ 0.05 pc, as noticeable in models
M6 and M7. Here, the dilution of photons with larger distance is
fully compensated by an increase in radiation-dust interactions.

3.2. Spectral shift

In order to analyze the radial profile of the radiative force Frad in
more detail, we track the position of each scattering and absorp-
tion event in the Monte Carlo RT simulations. Figure 6 shows
the resulting maps of interactions in our lowest and highest mass
clouds for a cluster with 50% star formation e�ciency (M4C4
model in the top row and M7C7 model in the bottom row). We
find that scattering is only e�cient within R < 3 ⇥ 10�3 pc,
in fairly distinct wavelength ranges, while absorption and re-
emission occur mostly at distances larger than about 3 ⇥ 10�2 pc
for essentially all wavelengths. However, even further in, absorp-
tion and re-emission can not be entirely neglected.

Closely related, Figure 7 illustrates the number of scattering
events as well as absorption and re-emission events occurring for
the same two models, M4C4 (top) and M7C7 (bottom). Cluster
radiation longwards of � & 100µm barely scatters once, since
the low-mass cloud is optically thin at these wavelengths (Fig. 3,
left panel) Even for the shortest wavelength emitted by the clus-
ter, the most likely number of scatterings is under five. Since
longer wavelengths are unlikely to scatter and shorter wave-
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1D cloud/cluster model
WARPFIELD-EMP:	
• 1D	model	of	cluster	
embedded	in	spherical	
cloud	

• starburst99	cluster	
evolution	

• dynamics	of	think	shell	is	
calculated	consistently	

• with	all	relevant	forms	of	
stellar	feedback	

• fast,	allowing	for	large	
parameter	studies		

• coupled	to	CLOUDY	and	 
1D	RT	

• many	different	emission	
diagnostics

work	by	Daniel	Rahner,	 
Eric	Pellegrini	ga
la

ct
ic

 c
en

te
r

W
AR

PF
IE

LD
-E

M
P

Pellegrini et al. (2018, to be submitted) 



synthetic BPT diagrams
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• heat	diagram	of	synthetic	
BPT	diagram	for	a	(small)	
sample	of	cluster/cloud	
models	at	different	ages



Carina with HST
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Star formation is intrinsically a multi-scale and multi-physics problem. 
Many different processes need to be considered simultaneously. 



Carina with HST

Star formation is intrinsically a multi-scale and multi-physics problem. 
Many different processes need to be considered simultaneously. 

• stars form from the complex interplay of self-gravity and a large number 
of competing processes (such as turbulence, B-field, feedback, thermal 
pressure) 

• detailed studies require the consistent treatment of many different 
physical processes (this is a theoretical and computational challenge) 

• star formation is regulated by several feedback loops, which are still 
poorly understood 

• tools for postprocessing simulations and for interpreting observations are 
available: Polaris, OPIATE, WARPFIELD-EMP


