Shocks in 2D and 3D: Implications for shattering of accelerated gas clouds

Martin Sparre

Potsdam Uni. / AIP

Collaborators:

Christoph Pfrommer (AIP), Mark Vogelsberger (MIT), Volker Springel (HITS/MPA)

Cosmological simulations

Cosmological simulations resolve the cosmological large-scale structure and the 50-100 pc structure of galaxies.

A characteristic scale for cold gas

Michael McCourt,¹*[†] S. Peng Oh,¹* Ryan O'Leary² and Ann-Marie Madigan^{2,3}

¹Department of Physics, University of California, Sant Barbara, Santa Barbara, CA 93106, USA

²JILA, University of Colorado, Boulder, CO 80309, USA

³Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA

A cloud interacting with a hot wind

Take-away messages from McCourt:

- Clouds larger than c_st_{cool} "shatter" into smaller clouds.
- Gas in (the outer parts) of galaxy might be in a different physical state than revealed by cosmological simulations.
- These results are based on 2D simulations. My work:
 - 1) quantify fragmentation
 - 2) 3D runs

Quantifying the fragmentation

Friends-of-Friends analysis

MS, Pfrommer, Vogelsberger in prep.

Clouds larger than cstcool fragment

MS, Pfrommer, Vogelsberger in prep.

A shallow power spectrum is seen for clouds larger than $c_s t_{cool}$

 We have reproduced the McCourt results, and quantified the fragmentation.

Two vs. three dimensions

Potential flow solutions

A potential flow with div $\mathbf{v} = 0$ and curl $\mathbf{v} = \mathbf{0}$

$$\nabla \cdot \mathbf{v} = \frac{1}{\rho} \frac{\partial \left[\rho v_{\rho}\right]}{\partial \rho} + \frac{1}{\rho} \frac{\partial v_{\phi}}{\partial \phi},$$
$$\nabla \times \mathbf{v} = \frac{1}{\rho} \left[\frac{\partial \left[\rho v_{\phi}\right]}{\partial \rho} - \frac{\partial v_{\rho}}{\partial \phi} \right] \hat{\mathbf{z}},$$

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial \left[r^2 v_r \right]}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial \left[v_\theta \sin \theta \right]}{\partial \theta},$$
$$\nabla \times \mathbf{v} = \frac{1}{r} \left[\frac{\partial \left[r v_\theta \right]}{\partial r} - \frac{\partial v_r}{\partial \theta} \right] \hat{\varphi},$$

Potential flow solutions

A potential flow has div $\mathbf{v} = 0$ and curl $\mathbf{v} = 0$

$$\begin{aligned} v_{\rho} &= v_{\text{inject}} \left(1 - \frac{R^2}{\rho^2} \right) \cos \phi, \\ v_{\phi} &= -v_{\text{inject}} \left(1 + \frac{R^2}{\rho^2} \right) \sin \phi, \\ v_z &= 0 \end{aligned}$$

$$v_r = v_{\text{inject}} \left(1 - \frac{R^3}{r^3} \right) \cos \theta,$$
$$v_\theta = -v_{\text{inject}} \left(1 + \frac{R^3}{2r^3} \right) \sin \theta,$$

$$\psi_{\varphi} = 0$$

The velocity field in 2D and 3D

The standoff distance in 2D and 3D

Mach number

2.5

3.0

- Standoff-distance is larger in 2D than in 3D
- Velocity around the cloud is largest in 2D.

→ **3D** is necessary

Shattering also occur in 3D!

Martin Sparre

MS, Pfrommer, Vogelsberger in prep.

Future work

Next steps

- Next steps: MHD, anisotropic thermal conduction.
- Link to cosmological simulations

Conclusions

- 3D is necessary for a reliable treatment of bow shocks and the acceleration of cold clouds.
- Radiative cooling causes shattering of large clouds. Both in 2D and 3D. The gas in galaxy outskirts is probably in a different state than revealed by simulations.
- Next steps: MHD, anisotropic conduction. Cosmology.