The cycling of gas and metals in simulated dwarf and spiral galaxies

Charlotte Christensen

Grinnell College Romeel Davé, Alyson Brooks, Andrew Pontzen, Fabio Governato, Tom Quinn, James Wadsley

Premise

- Given a hydrodynamic code that produces galaxies with reasonably realistic properties, using a physicallymotivated, tuned model for stellar feedback, let's back out information about outflow properties as a function of halo mass
 - + Amount of ejection and recycling
 - + Source of gas
 - ✦ Metallicity of gas

Code: Gasoline

- ✦ SPH code (Wadsley+ 2004)
- ← Cosmic UV background radiation
- + H & He ionization; non-equilibrium H₂ (Christensen+
- Metal line cooling and metal diffusion. O and Fe abundances tracked. (Shen+ 2010)
- Probabilistic star formation based on free-fall time and H₂ abundance (essentially, dust shielded fraction), c* = 0.1 (Christensen+ 2012)
- Supernovae feedback (blastwave, E_{SN}=10⁵¹ ergs) (Stinson+ 2006)
 - Cooling is disabled for the period of time equal to the momentum-conserving (snowplow) phase of the blastwave
 - + function of E, P and ρ (McKee and Ostriker 1977)

Simulations

- 20 central galaxies from zoom-in, cosmological simulations.
- Virial masses at z = 0 from $5 \times 10^9 10^{12} M_{\odot}$
- Gas particle masses: $3300M_{\odot}$ or $25,000M_{\odot}$
- Softening lengths: 87 or 170 pc, smoothing lengths > 0.1 softening

Matter Distribution within Galaxy

Baryonic Fraction

Baryonic Fraction

Relative efficiency at suppressing SF

- Halo preventative feedback dominates at small masses
- Disk preventative feedback similar over all mass range studied
- Global star formation efficiency and ejective feedback are similarly effective across mass range

Particle Tracking

✦ Outflowing gas:

- Must have once been in the disk
- Ejected from disk:
 - Outflowing gas which has kinetic energy greater than potential energy from the disk
- Expelled:
 - Outflowing gas which reaches beyond the virial radius
- ✤ 100 Myr time resolution
- + Start at z = 3

Spread of outflow material

Mass Loading Factor for Ejected Material

 $\eta_{\text{ejected}} \propto v_{\text{circ}}^{-2.2}$, close to energy driven No redshift evolution

For what is η measured?

We want a way to compare outflows across models We need a more comprehensive picture of outflows

Velocity of outflows

Christensen et al, 2016

Velocity of outflows

Christensen et al, 2016

Number of Times a Particle is Reaccreted

Christensen et al, 2016

Number of Times a Particle is Reaccreted

Reaccretion is important to galaxy evolution However, fraction reaccreted is highly dependent on

- feedback model
- selection of outflows

Amount of Time Before Reaccretion

Very little mass-dependency in reaccretion time: $\alpha M_{halo}^{-0.1}$ Similar to previous models at high mass, much lower at low mass

Source of ejected material/location of Reaccreted material

Outflows originate where stars form Low-mass galaxies eject from slightly broader region Reaccreted at systematically higher radii

Feedback-limited bulge growth?

Feedback-limited bulge growth?

Feedback-limited bulge growth?

Outflows are able to prevent bulge growth during mergers for galaxies with about $M < 10^{9.5} M_{\odot}$.

Result of higher mass loading in low-mass galaxies.

Can help explain mass-dependency of bulge fraction

Brooks & Christensen, 2015

Gas colored by metallicity

Stars

Metal Surface Density

Log Metallicity of Gas (slice through center of galaxy)

Metal Enrichment (°z/z)⁶⁰ of Outflows

Outflows are metal-enhanced compared to source ISM by a factor of ~1.6 to 3.

Less metal enhancement for dwarfs – because of greater mass loading?

Eventual Location of Metals

Eventual Location of Metals

Leo P: $M_* = 5.7 \times 10^5 M_{\odot}$ 5% O in disk gas, 1% in stars (McQuinn+ 2015)

Eventual Location of Metals

Leo P: $M_* = 5.7 \times 10^5 M_{\odot}$ 5% O in disk gas, 1% in stars (McQuinn+ 2015) $M_* \ge 10^{9.3} M_{\odot}$: 15 – 30 % of metals remain in disk gas or stars (Peeples+ 2014)

Summary

- Ejective feedback comparable to global SF efficiency in regulating SF
- Find mass loading consistent with energy driven analytic scaling
- Feedback preferentially removes matter from center; capable of limiting bulge growth
- Metals extremely efficiently removed from galaxies
- + $\eta^{?}(z?)$: tension between models at high gas surface densities
- Feedback model sensitive to amount and time scale of recycling
- Need for comprehensive model of winds and a way to compare between models
- CGM and ISM may be way to distinguish between FB models (see Agertz . . .)