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  Impact of Secondary Ionization Prescription  

The	model	implemented	ma@ers	
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Figure A2. Average number of collisional ionizations of HI (top
panel) and HeI (bottom panel) as a function of the electron energy
Ek in the non-linear regime Ek < 100 eV, with x = 0.1 (dashed
lines) and x = 10−4 (solid lines). The DG99, SVS85 and VF08
models are represented by black, blue and red lines, respectively.

APPENDIX B: IMPACT OF SECONDARY
IONIZATION MODELS ON H II REGIONS

To understand how the choice of a specific secondary ioniza-
tion model impacts on the final properties of the H II regions
(see Figure 2), we ran the same test of Section 3.2 by adopt-
ing the SVS85 and VF08 models. In addition to the standard
ionization rate Ṅ0 = 1.36 × 1056 photons s−1 we also con-
sidered the case with Ṅ1 = 1.36 × 1057 photons s−1. Note
that this ionization rate has been assigned to the quasar
considered in Section 4.

The results of this comparison are summarised in Figure
B1 for a case in which the contribution from X-rays and
secondary electrons is included (UV+X). First note that for
the simple configuration of this test the results provided by
SVS85 and VF08 are indistinguishable when N = N0, while
few small differences in the helium profiles are found.

Second, while a noticeable disagreement is found be-
tween DG99 and the other rmodels, both on the shape and
size of the H II regions, the extent predicted for the He II

and He III bubbles is similar in all the models. More specif-
ically, for both ionization rates, the DG99 model predicts
a radius of the I-Front smaller than the one obtained with
SVS85 or VF08, and a larger low ionization H II layer is
generally found in DG99. These differences are ascribable to
the different behaviour of the models in the limit xe → 0
(see Appendix A). Other differences in the xHeII and xHeIII

profiles are also present although less evident.
The highest discrepancy though is observed in the tem-

perature (bottom panel and small box inside it), which is
systematically higher by a factor of 2.7 within and nearby
the I-front in the DG99 model. It is lower instead, in the
outer, partially-ionized shell. These differences are ascrib-
able not only to the linear extrapolation of models SVS85
and VF08 at energies Ek < 100 eV (where they are not de-
fined), but in the way the heating mechanism is modelled.
SVS85 and VF08 tend in fact to over-estimate the ionization
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Figure B1. Radial profiles of the Strömgren sphere created in a
cosmological mixture of H and He at the final simulation time ts =
107 yrs. The distance d from the source is shown in physical Mpc.
In all the panels the profiles are obtained using the model: DG99
(blue lines), SVS85 (black) and VF08 (red). For each simulation
set two cases are considered: Ṅ0 = 1.36 × 1056 photons s−1 and
Ṅ1 = 1.36 × 1057 photons s−1. From the top to the bottom the
panels refer to the profiles of xHII, xHeII, xHeIII and log(T ) [K].
The small box in the bottom panel shows a zoom of the gas
temperature (in linear scale of 104 K) in the fully ionized region
0.1 < d < 0.9 Mpc, physical.

reducing the contribution to the photo-heating (see Figures
A1 and A2 in Appendix A) but also to distribute more en-
ergy to excitations instead of gas photo-heating.

Another sensitive difference in also found the slope of
the ionization front and it is due to the different way the
models handle the transition xe → 0, by favouring more
photo-heating than collisional ionization. For example, con-
sider that the DG99 model continues to predict some ion-
ization contributions for xe ∼ 10−6 while SVS85 and VF08
consider xe ∼ 10−4 as lowest ionization limit; the result
is then a flatter slope in the temperature profile and then
hotter temperatures T ∼ [5 × 102 − 103] K in the external
regions.
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²  Not	all	the	physical	processes/proper(es	relevant	for	cosmic	reioniza(on	are	(well)	known	

²  Even	if	they	were	we	would	not	be	able	to	model	everything	correctly	
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