Computational galaxy formation Ringberg 8-13.5.2016

SIMULATING COSMIC REIONIZATION

Benedetta Ciardi

Max Planck Institute for Astrophysics

MODELLING OF COSMIC REIONIZATION: INGREDIENTS

 \diamond Model of galaxy formation

Numerical simulations

MODELLING OF COSMIC REIONIZATION: INGREDIENTS

 \diamond Model of galaxy formation

Semi-analytic models

$$M \frac{dn}{dM} = \left(\frac{2}{\pi}\right)^{1/2} \frac{-d(\ln\sigma)}{d(\ln M)} \frac{\rho_0}{M} \upsilon_c e^{-\upsilon_c^2/2}$$

$$M_{*}^{\&} = \alpha \frac{dM}{dt}$$

$$t_{cool} < t_{dyn}$$
...

Numerical simulations

\diamond Properties of the sources of ionizing radiation

STELLAR TYPE SOURCES

STELLAR TYPE SOURCES

 \diamond Initial Mass Function and spectrum

STELLAR TYPE SOURCES

 \diamond Initial Mass Function and spectrum

 \diamond Escape fraction

Fesc < 20% but there is a big variation in the number both theoretically & observationallyFesc > 70% for primordial, very-massive stars

Large uncertainties associated to high-z stellar type sources

MODELLING OF COSMIC REIONIZATION: INGREDIENTS

 \diamond Model of galaxy formation

Numerical simulations

\diamond Properties of the sources of ionizing radiation

\diamond Evolution of the ionized regions

BC+ 2012; Eide+ in prep

Model of galaxy formation

Gadget-3 simulations from J. Bolton; Khandai+ (2015)

L [Mpc/h com.]	Particles	Mgas [Msun/h]
533	2 x 3200 ³	5.7 x 10 ⁷
100	2 x 1792 ³	2 x 10 ⁶
35.12	2 x 512 ³	4.15 x 10 ⁶
8.78	2 x 256 ³	6.48 x 10 ⁴
4.39	2 x 256 ³	8.11 x 10 ³
2.20	2 x 256 ³	1.01 x 10 ³

BC+ 2012; Eide+ in prep

Model of galaxy formation

Gadget-3 simulations from J. Bolton; Khandai+ (2015)

L [Mpc/h com.]	Particles	Mgas [Msun/h]
533	2 x 3200 ³	5.7 x 10 ⁷
100	2 x 1792 ³	2 x 10 ⁶
35.12	2 x 512 ³	4.15 x 10 ⁶
8.78	2 x 256 ³	6.48 x 10 ⁴
4.39	2 x 256 ³	8.11 x 10 ³
2.20	2 x 256 ³	1.01 x 10 ³

BC+ 2012; Eide+ in prep

Model of galaxy formation

Gadget-3 simulations from J. Bolton; Khandai+ (2015)

L [Mpc/h com.]	Particles	Mgas [Msun/h]
533	2 x 3200 ³	5.7 x 10 ⁷
100	2 x 1792 ³	2 x 10 ⁶
35.12	2 x 512 ³	4.15 x 10 ⁶
8.78	2 x 256 ³	6.48 x 10 ⁴
4.39	2 x 256 ³	8.11 x 10 ³
2.20	2 x 256 ³	1.01 x 10 ³

Properties of the sources of ionizing radiation

Emissivity(z) and distribute it among the halos with power-law spectrum

Index α	% of sources
1.8	100
3 - 1	70 - 30
3	100

BC+ 2012; Eide+ in prep

Model of galaxy formation

Gadget-3 simulations from J. Bolton; Khandai+ (2015)

L [Mpc/h com.]	Particles	Mgas [Msun/h]
533	2 x 3200 ³	5.7 x 10 ⁷
100	2 x 1792 ³	2 x 10 ⁶
35.12	2 x 512 ³	4.15 x 10 ⁶
8.78	2 x 256 ³	6.48 x 10 ⁴
4.39	2 x 256 ³	8.11 x 10 ³
2.20	2 x 256 ³	1.01 x 10 ³

Properties of the sources of ionizing radiation

Emissivity(z) and distribute it among the halos with power-law spectrum

Index α	% of sources
1.8	100
3 - 1	70 - 30
3	100

Radiative transfer of ionizing photons

BC+ 2001; Maselli, Ferrara, BC 2003; Maselli, BC, Kanekar 2009; Pierleoni, Maselli, BC 2009; Partl+ 2011; Graziani, Maselli, BC 2013; Graziani, BC, Ferrara in prep

CRASH

BC+ 2012

H evolution very similar (independently from He and spectral shape)

He evolution depends on spectral shape

BC+ 2012

Inclusion of He and correct spectral shape **are not** relevant for H reionization, but they **are** relevant for He and T evolution

FREQUENCY RESOLUTION

Frequency resolution is important!

Kakiichi+ in prep

Gas and source distribution

Gadget-3 simulations from J. Bolton

L [Mpc/h com.]	Particles	Mgas [Msun/h]
100	2 x 512 ³	9.58 x 10 ⁷
50	2 x 512 ³	1.20 x 10 ⁷
25	2 x 512 ³	1.50 x 10 ⁶

Properties of the sources of ionizing radiation

 \diamond Galaxies, α =3

 $\Leftrightarrow \text{ QSO, } \alpha \text{=}1.5, \, 1.36 \text{ x } 10^{56} \text{ s}^{\text{-1}}, \, t_{\text{Q}} \text{=}10^{7} \text{yr}$

Radiative transfer of ionizing photons

CRASH

BC+ 2001; Maselli, Ferrara, BC 2003; Maselli, BC, Kanekar 2009; Pierleoni, Maselli, BC 2009; Partl+ 2011; Graziani, Maselli, BC 2013; Graziani, BC, Ferrara in prep

Reionization	Galaxies	QSO	x-rays
on/off	on/off	on/off	on/off

Kakiichi+ in prep

Gas and source distribution

Gadget-3 simulations from J. Bolton

L [Mpc/h com.]	Particles	Mgas [Msun/h]
100	2 x 512 ³	9.58 x 10 ⁷
50	2 x 512 ³	1.20 x 10 ⁷
25	2 x 512 ³	1.50 x 10 ⁶

Properties of the sources of ionizing radiation

 \diamond Galaxies, α =3

 \diamond QSO, α =1.5, 1.36 x 10⁵⁶ s⁻¹, t_Q=10⁷yr

Radiative transfer of ionizing photons

CRASH

BC+ 2001; Maselli, Ferrara, BC 2003; Maselli, BC, Kanekar 2009; Pierleoni, Maselli, BC 2009; Partl+ 2011; Graziani, Maselli, BC 2013; Graziani, BC, Ferrara in prep

Reionization	Galaxies	QSO	x-rays
on/off	on/off	on/off	on/off

Kakiichi+ in prep

Neutral IC

Kakiichi+ in prep

Partial ionization from x-rays & secondaries

IMPACT OF SECONDARY IONIZATION PRESCRIPTION

Shull & van Steenberg (1985) Dalgarno et al. (1999) Valdes & Ferrara (2008)

The model implemented matters

CONCLUSIONS

- ♦ Not all the physical processes/properties relevant for cosmic reionization are (well) known
- \diamond Even if they were we would not be able to model everything correctly

CONCLUSIONS

CONCLUSIONS

