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(Juasar-mode feedback

Fundamental Models

* Radiation pressure on dust (Fabian g9,
Murray+os, Thompson+1s)

* Compton (X-ray) heating (Ciotti+or,
Sazonov+o35, Ostriker+10, Gan+14)

* Interaction with nuclear AGN wind (Silk &
Rees 98, King 03, Roth+12, Zubovas & King
12, Faucher-Giguere & Quataert 12)

Simplifying assumptions:

Symmetry, homogeneity, static configuration
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(Juasar-mode feedback

Fundamental Models Cosmological Simulations
 AGN feedback is modelled through the
» Radiation pressure on dust (Fabian g9, injection of thermal energy (Springel*+os, Di
Murray+os, Thompson+15) Mattep+o 5, Sijacki+o7, Booth & Schaye 09,
Dubois+12), momentum (Debuhr+11, Choi
+ Compton (X-ray) heating (Ciotti+or, +12, HOpkiI.l.SJFI 5) or a combination thereof
Sazonov+os, Ostriker+1o, Gan+14) (Curtis & Sijacki 15).

How well posed are such “subgrid” models In
° InteraCtiOIlWith IIUCleaI' AGNWiIld (Sllk& view of the more robust ana|ytica|

Rees 98, King 03, Roth+12, Zubovas & King understanding?
12, Faucher-Giguere & Quataert 12)

What is the impact of the cosmological

environment?
Simplitying assumptions:

Symmetry, homogeneity, static configuration How to bridge the gap with observations?



Observed outtlows
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Observed AGN-driven outflows are often multi-phase, appear to have a momentum flux >> L/c

and a kinetic luminosity of < 0.05 L.




Interaction with a nuclear AGN wind
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Interaction with a nuclear AGN wind
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Momentum-driven flows have a momentum flux of L/c.

They have been claimed to lead to the observed scaling relations (King 03, Murray 05).
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Interaction with a nuclear AGN wind
Momentum-driven
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Whether outflow is momentum- or energy-driven depends on whether the shocked wind (not

the shocked ambient medium) can radiate away its thermal energy.
(Weaver+77 [stellar winds], King 03, Zubovas & King 12, Faucher-Giguere & Quataert 12)




L.

Idealised simulations

Costa+14 (1)
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Numerical Simulations

Address a deliberately simplified setup Hydrodynamics followed using the moving-
in order to mimic #ze same assumptions mesh code AREPO (Springel 2010).

as taken in the analytic models:
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Resolution: 10°, 107, 10° cells.

1. Isolated Hernquist potential (10™
Msun) populated by gas at

Black hole masses in the range of 5 x 107
hydrostatic equilibrium.

Mgsun to 109 Mgpn.

2. AGN located at the centre emitting
atits Eddington limit (or following a
specific light curve).
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3. Aim at reproducing momentum- and
energy-driven limits (as in King 03,
05) taking the same assumptions.
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At any given time and given an AGN luminosity, energy-driven shells expand more quickly
through the halo.
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T'he energy-driven limit

Rayleigh-Taylor instabilities lead to the breakdown of the “thin shell” assumption.

R-T instabilities develop

Can be modelled accurately in state-of-the-art simulations.




The momentum-driven limit

—r T [ 1] -
100 - co e ®® -
: MOMENTUM-DRIVEN .o' ] 2000 ————— ——————
| a M1: Mg, =5x10" Mg M2: 10° My M3: 3x10° Mg
! 3 Energy-driven
. 1500 Momentum-driven ]
o I M2
£ 1000 ]
- . M1
2 ! M2
% 500-— M3 .
> I e _—
‘o ®© 00 00000 0 00 O_E:SD_B§QI\J|C ::::E
- e I
i | '500_111- 1 | TR
1 10 100
RN B S S S T S ST ST S T S T S S S S S S S RS S S Radius[kpc]
0 50 100 150 200 250 300
Time [ Myr ]

King's momentum-driven solution can be well reproduced in the supersonic regime.

We confirm that:
There is a limiting luminosity above which outflows are gravitationally unbound.




Radiation pressure on dust
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Can reproduce radiation pressure-driven shells in RAMSES-RT (Rosdahl & Teyssier 2012) with

remarkable accuracy too.

Costa, Rosdahl, Sijacki+ (in prep.)
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The cosmological environment

Costa+14 (II)
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T'he host haloes of z = 6 quasars |

about 106 MSUN




The host haloes of z = 6 quasars 11

about 109 Msun

<
Pea(r) [Mokpc™® ]

High-redshift quasars probably lie in extremely deep potential wells fed by multiple filaments.
- Yohan Dubois s talk)




Numerical Simulations

Include the same prescriptions for energy- and
momentum-driven outflows into cosmological
simulations of BH growth, including:

1. Radiative cooling & star formation

2. AGN at different constant luminosities (for
the purpose of comparison with simple

analytical models).

Perform simulations for an identical halo, but
now addressed in 1solation.

Maximum resolution: 70 pc.

Goal: Given the same AGN-driving mechanism, how does its efficiency change

by including a realistic treatment of the cosmological environment?



T'he energy-driven limit
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Outflows take paths of least resistance.

While slightly less efficient, energy-driven outflows are sufficiently energetic to evacuate the
quasar host potential.




The momentum-driven limit
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Momentum-driven outflows inefficient already at scales > 70 pc.

Crucially, a momentum flux of L/c is insufficient to prevent the innermost regions of the
halo from being replenished.




The momentum-driven limit
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A momentum flux of10 L/c is about sufficient.



Energy-driven outtlows

Integrated values

10.00é —r ',',;~10,Myr, —rTrT — ,Energy-dnveng T
N t ~ 20 Myr i ]
_ t ~ 40 Myr __— I 0.019 L |
z~78att=0Myr

;_, 5

~

> -

‘=2 0.10k 7.1 Ue =

1 10 100 L 10 100
Radius [ h™” ckpc ] Radius [ h™ ckpc ]

High momentum fluxes and kinetic luminosities reproducible in cosmological simulations as

required by observational constrains.
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T'he origin of cold ()utﬂowmg oas

Costa+1s




The host haloes of z = 6 quasars 111
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High-redshift quasars probably lie in extremely deep potential wells.

Circular velocity can exceed 500 km/s even in the presence of strong feedback.

Costa+1s



In-situ cold gas formation |

Potential well unrealistically deep in this case.
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High-redshift quasars probably lie in extremely deep potential wells.

Gas can be accelerated to speeds > 500 km/s due to gravity alone.



In-situ cold gas formation 11
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Hard to cool in-situ at > 5 kpc in cosmological simulations, since outflows quickly expand into

low density regions, where cooling times are long.



In-situ cold gas tormation 111
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This gas must leave the halo and it also cools.

Radiative cooling of hot outflowing gas can lead to in-situ cold gas formation provided that
IGM is clumpy and metal-enriched.
Important physics most likely missing: radiation pressure on dust, low T cooling and non-
equilibrium chemistry, MHD, conduction, ...

(Zubovas & King 14, Thompson+15)



Conclusions

Outflows require momentum fluxes >> L./c in order to revert
inflows and eject large masses of gas out of massive quasar host

haloes.

Momentum-driven outflows (or any outflow carrying a
momentum flux of about L./ ¢) fall short already at scales <100

pc.

Energy-driven outflows are sulficiently energetic, but
“quenching” occurs only temporarily in the rapid cooling phase.

Cold outflowing gas extended over scales > 10 kpc can form in-
situ via radiative cooling, provided the IGM is pre-enriched with
metals and dense clumps.



Numerical convergence
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Numerical models are well converged.
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Numerical convergence
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Radiation pressure on dust
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Can reproduce radiation pressure-driven shells in RAMSES-RT (Rosdahl & Teyssier 2011) with

remarkable accuracy too.

Costa, Rosdahl, Sijacki+ (in prep.)



Radiation pressure on dust
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Can reproduce radiation pressure-driven shells in RAMSES-RT (Rosdahl & Teyssier 2012) with

remarkable accuracy too.

Costa, Rosdahl, Sijacki+ (in prep.)



Conclusions

Outflows require momentum fluxes >> L./c in order to revert
inflows and eject large masses of gas out of massive quasar host

haloes.

Momentum-driven outflows (or any outflow carrying a
momentum flux of about L./ ¢) fall short already at scales <100

pc.

Energy-driven outflows are sulficiently energetic, but
“quenching” occurs only temporarily in the rapid cooling phase.

Cold outflowing gas extended over scales > 10 kpc can form in-
situ via radiative cooling, provided the IGM is pre-enriched with
metals and dense clumps.



T'he host haloes of z = 6 quasars
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In order to grow to masses > 10° Msun by z = 6, high-redshift quasars must be hosted by

massive (> 5x1012 Msun) and rare dark matter haloes.




