The MUFASA Simulations

Cosmological galaxy formation with meshless hydrodynamics

Romeel Davé

Robert Thompson (UWC/NCSA), Phil Hopkins (Caltech), Fabrice Durier (Arizona/MPA), Daniel Angles-Alcazar (Northwestern), Mika Rafieferantsoa (UWC/MPA), Desika Narayanan (Haverford)

Numerical Galaxy Formation

- Multi-physics (with gas dynamics):
 - Direct: Gravity, pressure, shocks, cooling & heating
 - "Sub-resolution": Star formation, black hole growth, chemical enrichment, *feedback* (AGN, SNe, ...)
 - Optional: Radiative transfer, magnetic fields, conduction, cosmic rays ...
- Multi-scale:
 - "Hubble volume" Approaching the whole Universe
 - "Cosmological" Representative volume for statistics
 - "Zoom" Individual object(s) within a cosmo volume
 - "Isolated" Single object for controlled experiments

GIZMO-MUFASA

- GIZMO: New cosmological gravity+"meshless" hydro code by Hopkins (2015) – mesh cells conserve mass!
- Grackle-2.1 cooling+heating, including metals
- Star formation (H₂-based), minimal ISM pressure
- 9-metal chemical enrichment: Type II/Ia + AGB stars+heat
- Kinetic winds (+ SN heating), quenching via "radio mode"

MUFASA runs

- Cosmological "random" volumes:
 - 2x512³ particles, 12.5, 25, 50 Mpc/h volumes
 - $\varepsilon_{min} = 0.125, 0.25, 0.5 \text{ kpc/h resolution (adaptive)}$
 - $M_{*,min} = 10^7 M_{\odot}$, 8x higher at each larger box.

Name	L^a	ϵ^b	$m_{ m gas}$	$m_{ m dark}$	$m_{ m gal}^c$
${ m m12.5n512}\ { m m25n512}\ { m m50n512}$	$12.5 \\ 25 \\ 50$	$\begin{array}{c} 0.125 \\ 0.25 \\ 0.5 \end{array}$	$2.85 imes 10^5$ $2.28 imes 10^6$ $1.82 imes 10^7$	$egin{array}{c} 1.5 imes 10^6 \ 1.2 imes 10^7 \ 0.96 imes 10^8 \end{array}$	$9.1 imes 10^{6} \ 7.3 imes 10^{7} \ 5.8 imes 10^{8}$

Zooms underway…

Star formation

- Krumholz & Gnedin 11. C=30 in fiducial case, but scale w/ε:
 - C = 30 (ε/0.5 kpc).
 - $\Sigma = \rho^2 / |\nabla \rho| \sim \rho h \sim C^{2/3}$.
- M_{Jeans}-based pressurized ISM

Decoupled kinetic winds

 FIRE (Muratov+15) scalings, with increased v_w amplitude:

$$\begin{split} \eta &= 3.55 \Big(\frac{M_*}{10^{10} M_{\odot}}\Big)^{-0.351} \\ v_w &= 2 \Big(\frac{v_c}{200}\Big)^{0.12} v_c + \Delta v_{0.25}. \end{split}$$

• On-the-fly FOF galaxy finder
$$v_c = (M_b/102.329)^{0.26178} (H(z)/H_0)^{1/3}$$

 Two-phase winds: 30% ejected "hot" from E_{SN}

Recouple @ $0.01t_H$ or M < 0.5

$$\Delta u = u_{SN} - \frac{1}{2}\eta v_w^2.$$

Quenching ("AGN") Feedback

- Quenching feedback: Keep the hot gas hot (Gabor+RD12), for $M_h > M_q = 10^{12+0.48z}$ (from equilibrium model of Mitra+15).
- All non-shielded gas out to R_{vir} is heated up to $T \sim T_{vir}$.
- Total energetics requires 0.01-0.1% of BH rest energy, comparable to (cumulative) SNe energy in quenched galaxies

Stellar mass functions

Stellar growth & downsizing

Color Bimodality

- Colors from LOSER: FSPS+A_V from Z column along LOS
- Nice, but it seems that there are too many red dwarfs?

LOSER: https://bitbucket.org/romeeld/closer

Galaxy Sizes

- R_{1/2,*} a bit too small at high-z, OK at low-z
- Not great resolution convergence, but perhaps Illustris/EAGLE resolution is ok.

Main sequence evolution

Mass-Metallicity

- SNII yields (Limongi&Chieffi) x0.5.
- Stellar mass from star particles vs. SFRweighted gas oxygen abundance.
- Too steep at M_{*}>10¹⁰
- Shows "fundamental metallicity relation"

HI & H2 content

- Need to post-process self-shielding; differences.
- Total gas & HI are in reasonable agreement, but HIMF looks cut off at high & low masses.
- H₂ looks low; possible tweaks needed to H₂ model

Does Hydro Matter?

- Mostly at low-z, when recycling happens
- Not a generic trend: Likely dependent on outflows

Hot outflows

- Hot winds crucial; wind direction ~irrelevant
- SN heating affects high-M* more (winds take less E)

The Sequel

- A more physical BH model using Daniel's torquelimited accretion, with kinetic feedback.
- Quenching via a low-f_{Edd} reservoir with periodic bursts (Fabrice) – keep the knee!
- Improve sub-grid thermal outflow model.
- MW zooms, group zooms, cluster zooms... dwarf zooms vs. FIRE?
- Do science.
- Profit.

The Trouble with Hydrogen

- HI is not a direct prediction of models! Must subdivide H gas into ionized, neutral, molecular.
- So far, fairly simple self-shielding & H₂ prescriptions have been used.
- Crucial issue: CGM neutral gas. There's a lot! Cold cloud masses may be ${\sim}10^{3\cdot4}M_{\odot}$ (Crighton+15) << anything sims can resolve.

SPHGR(-yt) (Robert Thompson)

- SPHGR: "One-touch" galaxy catalog generation from a simulation snapshot (written in Python).
- Now incorporating into the yt package (SPHGR-yt), which adds much more functionality.
- Runs galaxy finder, halo finder, cross-correlates.
- Creates hdf5 file containing galaxy catalogs at every snapshot (redshift), including all galaxy properties e.g. M_{*}, SFR, M_{HI}, Z, J, r_{1/2}, ..., also with halo info.
- Magnitudes/spectra using LOSER. Merger trees, movies... *Light cones?*

https://bitbucket.org/rthompson/sphgr

Advantages of GIZMO

Wanna see something really scary?

Cosmology

Star Formation

Black Holes

Hubble GOODS field

Mg

Evolution

Includes: Gravity Gas (moving mesh) Star formation Photoionizing bkgd Black hole growth 10-species chemistry Type II SNe feedback Type Ia SNe feedback AGB stellar evol AGN feedback

Stars Gas density Temp. Metallicity

~6 billion cells 1 kpc resolution 100 Mpc volume

The Illustris Project: AREPO

Galaxies = Gas Processing (from IGM) SFR = $(\zeta M_{grav} + M_{recyc})/(1+\eta)$ $Z = y SFR/\zeta M_{grav}$

 $\eta/(1+\eta)$

11 ------

 $1/(1+\eta)$

Parameterize, Bayesian MCMC

 Turns out we need 8 parameters (Bayesian evidence analysis shows that removing any more is not preferred.
 Mitra+14

$$\eta = \left(\frac{M_h}{10^{\eta_1 + \eta_2}\sqrt{z}}\right)^{\eta_3}$$

$$\zeta_{\text{quench}} = \text{MIN}\left[1, \left(\frac{M_h}{M_q}\right)^{\zeta_1}\right], \frac{M_q}{10^{12}M_{\odot}} = (0.96 + \zeta_2 z).$$

$$t_{\rm rec} = \tau_1 \times 10^9 \text{yr} \times (1+z)^{\tau_2} \left(\frac{M_h}{10^{12}}\right)^{\tau_3}$$

Observational Constraints

- M_{*}-M_{halo} (equivalent to GSMF, z=0-2): Inferred from GSMF(z~0-6) data, consistent w/SFR evol. [Behroozi+13, Moster+13].
- Mass-Metallicity relation: Now seen out to z~2 thanks to Keck/Mosfire. [Steidel +14,Sanders+14]
- SFR-M_{*} (z=0-2): Recent compilation with consistent calibrations from Speagle+14. [also Whitaker+14,Schreiber+14].

(χ²~1.6)

Outflows stronger in low-mass galaxies

- $\eta \sim M_h^{-1.2} \sim M_*^{-0.3}$
- Stronger at hi-z
- FIRE (Muratov +15): η ~ M*^{.0.35}, amplitude like at z~2 but invariant w/z.

•
$$t_{rec} \sim M_h^{-0.45} \sim M_*^{-0.2}$$

• Opp,RD+08, 10 best-fit hydro sims: t_{rec}~M_h^{.0.5}

