Real Friends Say Hard Things: Numerical Convergence

Nick Gnedin

Simulator's Bane: Numerical Convergence

 One can have the best subgrid model for star formation and feedback, but if the simulation results are not numerically converged, one is studying truncation errors...

$$\frac{df}{dx} = \frac{\Delta f}{\Delta x} [\Delta x] + \text{T.E.}$$

If T.E. is small, then

$$\frac{\Delta f}{\Delta x}[\Delta x_1] \approx \frac{df}{dx} \approx \frac{\Delta f}{\Delta x}[\Delta x_2]$$

Simulator's Bane: Numerical Convergence

- Individual simulations have fixed spatial Δr and mass M_1 resolution.
- Any quantity measured in a simulation depends on resolution:

 $Q = Q(\Delta r, M_1)$

But only a converged value has physical meaning.

$$\hat{Q} = \lim_{\Delta r \to 0} \lim_{M_1 \to 0} Q(\Delta r, M_1)$$

The Hard Truth:

- We all want numerical convergence.
- Exploring convergence is expensive, time consuming, and, frankly, plain boring.

The CROC Project:

 The goal is to have simulations that realistic in a quantitative sense, and can be used for interpreting the observational data.

	Yesterday		Today
	Small box	Large box	
physics	full	incomplete	full
spatial resolution	high	low	high
mass resolution	high	high	high
dynamic range	low	high	high
volume	small	large	large

The CROC Project: Star Formation

Star formation correlates well with molecular gas...

The CROC Project: Stellar Feedback

"Delayed cooling" is now "industry standard".

The CROC Project: Convergence Study

The CROC Project: Convergence Study

The CROC Project: Convergence Study

Spatial convergence is slow – only reached at

Global SFR

- When convergence is close, extrapolation to $\Delta r \to 0$ is robust.

Extrapolate first in space, then in mass...

Extrapolate first in mass, then in space...

...and both together.

Weak Convergence

 At production scale, we cannot run the whole convergence ladder – have to reply on "weak convergence".

$$\hat{Q} = \lim_{\Delta r, M_1 \to 0} Q(\Delta r, M_1 | p_j) \approx Q(\Delta r, M_1 | \hat{p}_j)$$

- As we change the resolution, we adjust the parameters of the model to keep the solution fixed.
- WARNING: if quantity Q is weakly converged, it does not guarantee that some other quantity H is weakly converged too!

Weak Convergence

 A graphical view: keeping straight on your path to the goal.

Resolution

To weakly converge on global SFR is easy, but it is not enough!

Weak Convergence

 One needs to rescale SFR in halos of different masses.

 $\dot{\rho}_* \to \dot{\rho}_* \times W_C$

Ideally, one would have

 $W_C = W_C(M_h)$

 To avoid running a halo finder on-the-fly, make a poor man's proxy:

 $W_C = W_C(\rho)$

Miracles do happen: now it works!

It Pays To Converge

Galaxies are ok (at all times!)

It Pays To Converge

- LAE disappear rapidly past z~6.
- Early galaxies have enough dust.

- Achieving strong convergence in realistic galaxy formation simulations is close to impossible (and, frankly, is not worth it).
- Weak convergence is a sensible approach to ensuring (some of) your results are (approximately) resolution independent.
- It may be a fool's hope, but numerically converged solutions could be closer to reality than the ones dominated by truncation errors...