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KS relation in dwart galaxies
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Very steep slope (N=2~3) below Z.; <10 M, pc™
Transition from tge, ~ 1 Gyr to t4e, ~ 100 Gyr (extremely inefficient SF)



The interstellar radiation field (ISRF)

ISRF:
Stellar radiation with energy less than 13.6 eV Ll ISRF
(not enough to 1onize hydrogen) *

AAVAVA <

AAVAVA <
HII region HI
(E < 13.6 eV)
What does ISRF do?

1) Heat up the ISM by photoelectric (PE) effect

N
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2) Destroy H, via photodissociattion
H+y—2H
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Heating and cooling in MW

In the Milky Way (or typical spiral
galaxies), the PE effect is the dominating
heating mechanism.

While the metal line emission (CII, OI)
dominates cooling.

The thermal balance in the ISM s largely
controlled by these processes.
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Heating and cooling in MW

Mass-weighted PDF

Wolfire+ 2003
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Modeling spatially varying ISRF in dwarf galaxies

Due to the low surface density and low dust abundance in dwarf galaxies, we can
neglect dust extinction and calculate the ISRF directly from stars using the simple 7~ law.

from stellar library
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To speed up, we calculate the ISRF using the tree approximation during the tree walk.

Is it really a fair approximation? => need radiative transfer to confirm (T. Peter's talk).



Simulations

Physics:
- gravity & hydrodynamics (Gadget-3 + modern SPH)
- non-equilibrium cooling & chemistry network (similar to SILCC)
- star formation (SFR = & p,,, / t;;, threshold = 100 cm™ & 100 K, £=2%)
- SNII feedback (individual explosions)
- metal enrichment (SNII+AGB)

M, = 2x10'°M,,

Setup:
- isolated dwarf galaxy
- Z=10.1Z,, dust-to-gas ratio = 0.1% , uniform distribution M, =4x10"M,
- SPH particle mass = 4 M, in order to resolve cold gas Mi = 2x10"M,
(no pressure floor)
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Simulations
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Resolving individual SN feedback

In a medium density of 1 cm™ & Z=0.1Z¢) , we need SPH particle mass ~ M@ .
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Should be worse if
/=70 and/or

with metal enrichment

but should be better if
n<0.1 cm™
(e.g. Steffi's talk)
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Numerical difficulties with too high resolution

Stellar population approach: every 100 M, stellar population there is one SNII event.

What if your particle mass is below 100 M,? (e.g. 4M,)

- stochastic injection: do one SNII feedback for every 25 particles.
- how about metal enrichment? There's only 4M,, available...

Direct IMF sampling:
- assign an array of stellar masses m; from IMF to a star particle until Y ;m;, > m

- the residual mass m,, = ) m. - m, 1s borrowed from the next star particle
(Y,m; >m,,+ mg, , for the next particle )
- if a star particle is assigned with zero mass, remove it

star

star,2

remove!
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Stellar masses

Kroupa IMF
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The spatial distribution of ISRF

z [kpc]
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The majority of gas feels a smoothly varying
ISRF.

Nearby the young stars, ISRF can be enhanced
by orders of magnitude (bright PDRs).

10g10G0

10810 Go

Gg ~ 1 in the solar neighborhood.
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The spatial distribution of ISRF

Only ~ 1% of the total gas
as Go> 10
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Radial trend of ISRF changes thermal balance

CcO

dust—gas collision
photoelectric effect
cosmic ray ionization
H, photodissociation

H, formation

main heating: PE effect
main cooling: CII emission.

The equil. curve changes as GO changes
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Radial trend of ISRF changes thermal balance

or main heating: PE effect
- main cooling: CII emission.

— CO
dust—gas collision
- - photoelectric effect
- - cosmic ray ionization
- - I, photodissociation

- - H, formation

The equil. curve changes as GO changes
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Radial trend of ISRF changes thermal balance

G, = 0.01

or main heating: PE effect
Sill main cooling: CII emission.
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dust—gas collision

photoelectric effect

cosmic ray ionization

H, photodissociation

H, formation

The equil. curve changes as GO changes
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But it doesn't seem to be relevant...

SN feedback creates turbulence and shocks fast enough to
drive the gas out of thermal equilibrium

0 <R <0.5kpc

Cooling time t.,,, = 50 Myr
when n=lcm” & 7Z=0.1Z,

=> no time to cool...

SN feedback not just causes the scatter in
the phase diagram, as is the case in spirals.

The PE heating becomes sub-dominant.

The balance between metal line cooling
and the SN heating controls how much
gas can cool and form stars.

star-forming gas 19



Even when PE heating is turned off completely

Without PE & CR heating, the equil. temperature should be zero...
The only heating source here 1s the SN feedback.

0 <R < 0.5 kpc

2L equil. curve-

- e | But the majority of gas is

still kept warm here!

star-forming gas 20



SN heating dominates PE heating

SN feedback creates turbulence and shocks fast enough to
drive the gas out of thermal equilibrium

0.5 <R <1kpc

Cooling time t.,,, = 50 Myr
when n=lcm” & 7Z=0.1Z,

| => no time to cool...

SN feedback not just causes the scatter in
the phase diagram, as is the case in spirals.

The PE heating becomes sub-dominant.

i The balance between metal line cooling

o= and the SN heating controls how much

i gas can cool and form stars.

star-forming gas 21



SN heating dominates PE heating

SN feedback creates turbulence and shocks fast enough to
drive the gas out of thermal equilibrium

1 <R < 1.5 kpc

-

Cooling time t.,,, = 50 Myr
when n=lcm” & 7Z=0.1Z,
| =>no time to cool...

SN feedback not just causes the scatter in
the phase diagram, as is the case in spirals.

The PE heating becomes sub-dominant.

The balance between metal line cooling
and the SN heating controls how much
gas can cool and form stars.

star-forming gas 22



SN heating dominates PE heating

SN feedback creates turbulence and shocks fast enough to
drive the gas out of thermal equilibrium

1.5 <R < 2kpc

Cooling time t.,,, = 50 Myr
when n=lcm” & 7Z=0.1Z,

| => no time to cool...

SN feedback not just causes the scatter in
the phase diagram, as is the case in spirals.

The PE heating becomes sub-dominant.

The balance between metal line cooling
and the SN heating controls how much
gas can cool and form stars.

star-forming gas 23



Fy, (n>100cm ™)

SFR and H, fraction
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ISRF only has a modest effect on SFR,
even when it's switched off completely.

ISRF has a stronger effect on the H, fraction.
- strong ISRF destroys H, in dense clouds.

Dense gas has very low H, fraction
- H, 1s a bad tracer of star formation in dwarfs.
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Agree well with observations with whatever PE and CR heating, as
long as the SN feedback is on.
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— Without SN
feedback the gas
will be here, even
with PE heating.
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In tension with Forbes+ 2016

Forbes+ 2016 concluded that PE heating alone can
suppress SFR in dwarfs.
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In tension with Forbes+ 2016

Forbes+ 2016 concluded that PE heating alone can
suppress SFR in dwarfs.
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Differences:

Resolution

SF threshold
SF efficiency

SN delay time
Gas surface density

Why so different?

ours

4M@E x 100
100 cm™ & 100 K
2%
3 Myr
1-10 M@ /pc?

Forbes+2016

2.5-10 pc
Jeans (~ 1-10cm™)
1%
individual
?
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Summary

We conducted isolated dwarf galaxy simulations with detailed ISM physics
and high enough resolution (mg,, = 4 My) to resolve the cold and dense gas.

We implemented a spatially varying IRSF calculated directly from stars
without free parameters, which naturally produces a smooth varying
background ISRF, while nearby the sources the ISRF can get much higher.

The ISM in dwarfs is not in thermal equilibrium! SN feedback generates
turbulence and shocks which dominates over PE heating, drives the gas out of
thermal equilibrium and regulates star formation.

The ISRF has a significant effect on the H, fraction, even though H, is not
relevant for star formation.
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Including 10ni1zing radiation

Use the correct delay times of individual massive stars.
Still much warmer than the equil. curves.
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long [K]

No 10n1zing radiation

0 <R < 0.5 kpc
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