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“ Fundamental Question

s

- Why do we need galactic winds?

- blow out gas

- quench star formation

- because it is the

'
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- Can SN (stellaF) f
- What is the mass loading factor?

- Can it drive multiphase winds?

*




What is the current status?

- Large scale simulations begin to resolve individual SN (or better calibrated
models for collective SN feedback)

- Morning Talks!

- Note: condition for convergence of SN feedback (Kim & Ostriker 15a)

- Local box simulations for resolved individual SN with thermal energy feedback
» This session!

- Importance of spatial distribution is emphasized

- SFR (SN rate) was fixed, and ran for a short time (~100Myr)

+ CRs+MHD

- What can we learn from local box simulations?



How do SN details affect outflows?

- We now know the importance of spatial distribution of SNe

(Gatto+14;Walch+15;Girichidis+16)

Random driving

8 Walch+15

- Self-consistent temporal correlation of SNe does matter too!



What are “the goods” of our simulations?

- Self-consistent feedback from time-varying SFR ~ wo——— o0
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- Clusters: STARBURST99, fully sampled IMF, lifetime
of 40Myr
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- Runaways: binary runaways, 1/3 of SNe 200
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. Resolved SN Feedback events (~90% in thermal R
energy; ~10% in momentum)

4000: T - — 1 ..
: === All Observed
- Nq 8]7\0(]85

S I st

- FUV heating (no radiative transfer)
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Magnetic fields with galactic differential rotation
(Kim & Ostriker 15b)
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Long term evolution to reach self-regulated state | 77
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SFR for last 10, 40, 100 Myr
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SFR is self-regulated!
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Fraction of Gas
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SFR is self-regulated!

SFR for last 10, 40, 100 Myr
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SFR is self-regulated!
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Midplane Pressure of Cool Gas: Piot.3/kp



Vertical Dynamical Equilibrium: Force Balance
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SNe drive Hot Winds!

steady, adiabatic hot winds launched at |z|~1kpc
—> <pV,> is nearly constant in z
cool gas (+WHIM) fountain —> inflow/outflow
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SNe drive Hot Winds!

steady, adiabatic hot winds launched at |z|~1kpc
<B>~<v2[24yP/(y-1)p+D> is nearly constant in z
(or along streamlines in global geometry)
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SNe drive Hot Winds!

- Hot Winds launched at around ~1kpc

- mass loading factor = (hot gas outflow rate)/(star formation rate) ~ 0.1 -1

- still subsonic, but can be further accelerated as in classical winds (CC85) or differently
based on geometry (morphology of streamlines)

- Cool gas (and WHIM) can go up to a few kpc, but fall back (fountain) in a
MW-like gravitational potential

- cool phase outflows may be produced by cooling of hot outflows (Thompson+,
Bustard+ 2016)

- CRs?

- SN feedback regulates SFR and galactic winds!



One more thing...
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What do runaways do? e

—— w/o runaways :

10-2

- w/0o runaways, winds are more
bursty, pushing more/less cool/
hot gas to outflow (still, cool
winds are not fast enough)
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SNe drive Hot Winds!

- Hot Winds launched at around ~1kpc

- mass loading factor = (hot gas outflow rate)/(star formation rate) ~ 0.1 -1

- still subsonic, but can be further accelerated as in classical winds (CC85) or differently
based on geometry (morphology of streamlines)

- Cool gas (and WHIM) can go up to a few kpc, but fall back (fountain) in a
MW-like gravitational potential

- cool phase outflows may be produced by cooling of hot outflows (Thompson+,
Bustard+ 2016)

- CRs?
- SN feedback regulates SFR and galactic winds!

- Runaways (SNe at high-|z|) are key for continuous Hot Winds



