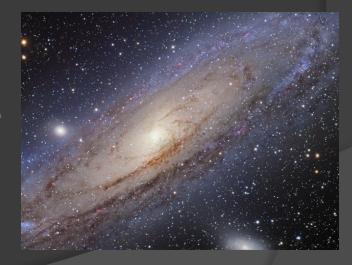


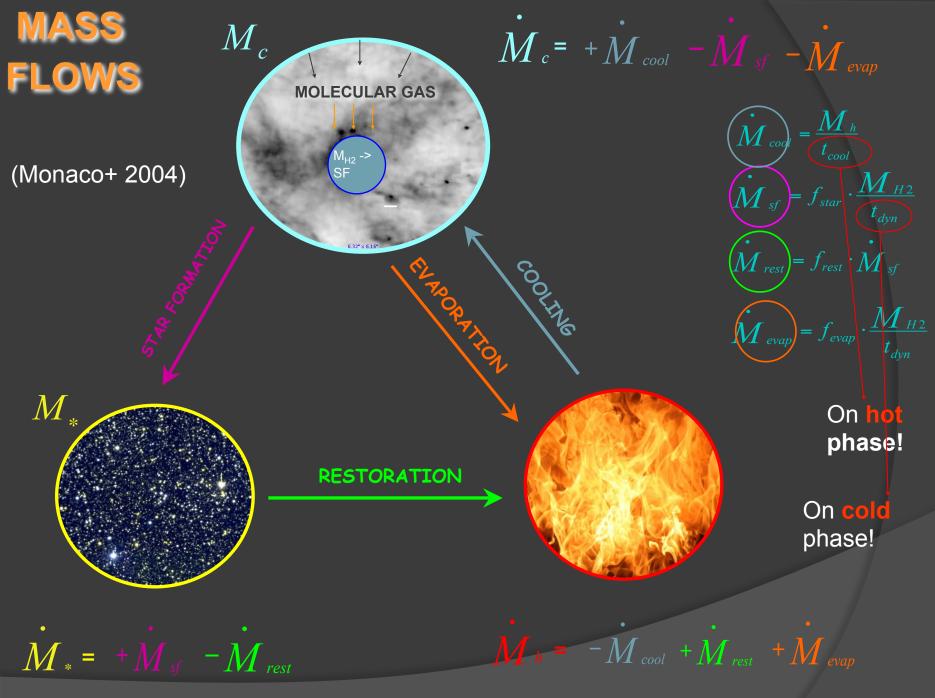

G. Murante – INAF OATs, with:


P. Barai – SNS Pisa S. Borgani – Univ. Ts A. Curir – INAF OATo K. Dolag – Univ. Muenchen R. Dominguez-Tenreiro – UAM, Madrid D. Goz – Univ. Ts G. Granato – INAF OATs U. Maio – Univ. Posdam P. Monaco – Univ. Ts A. Ragagnin – Univ. Muenchen C. Ragone-Figueroa - IATE, Argentina L. Tornatore – INAF OATs M. Valentini – SISSA. Ts G. Yepes - UAM, Madrid ... and many others...

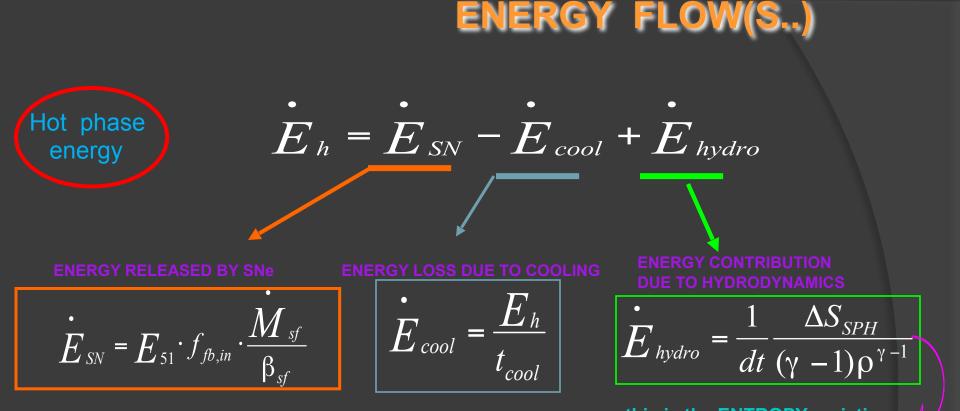
DISK GALAXIES WITH MUPPI

The idea...

trying to capture (some of) the interplay between large scale hydrodynamics and the physics of the ICM


..at moderate resolution (SN blasts & GMCs not resolved)

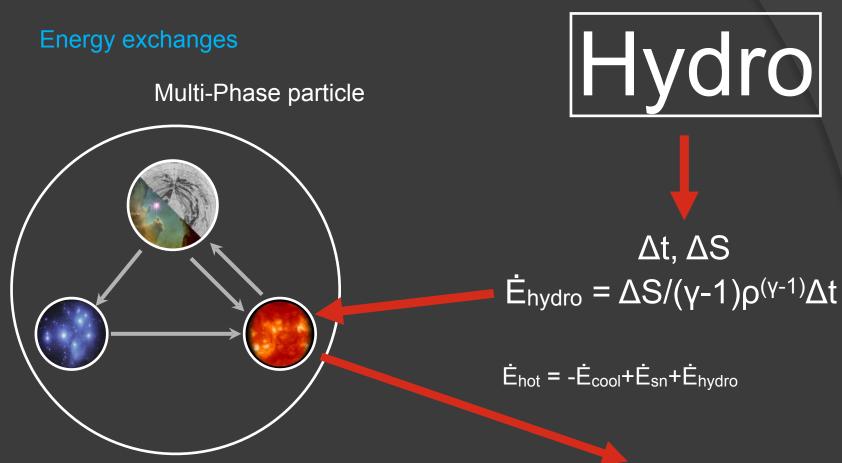
May 10th, 2016


MUPPI: MUlti Phase Particle Integrator

Murante, Monaco, Giovalli, Borgani, Diaferio, 2010, MNRAS, 405, 1491

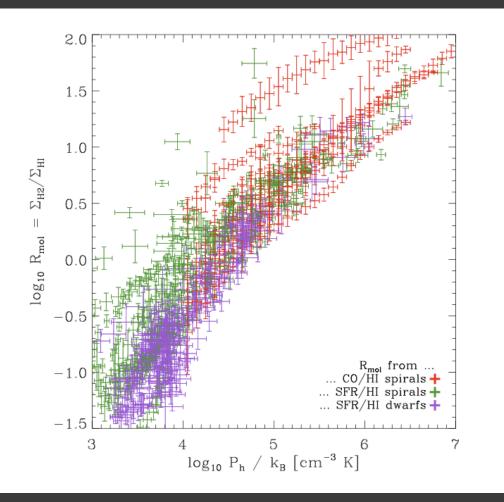
- Star formation & feedback algorithm
- Implemented in GADGET-3
- Integrates ISM equations for each particle at each SPH time step
- Thermal energy not radiated away immediately
- Obtains SK relation without imposing it (See Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485)
- Gives ISM characteristics (averaged! no details on outflow)
- Works in a given range of resolution scales!

May 10th, 2016


PRESSURE-DRIVEN SF

 $M_{H2} = f_{coll} \cdot M_c$ $f_{coll} = \frac{1}{1 + 4\left(\frac{P_0}{P_{ext}}\right)}$

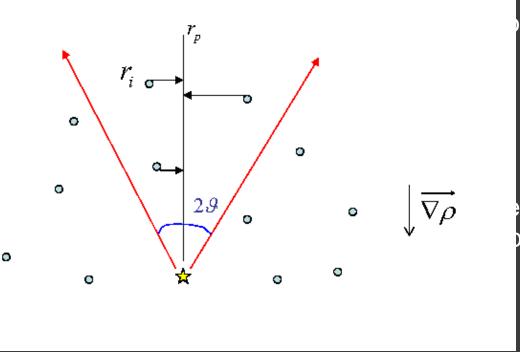
this is the ENTROPY variation due to SPH hydrodynamics


Phenomenological (Blitz & Rosolowsky 2006) $P_{ext} \approx P_{therm}$ with $P_0 = 35000$ (this parameter is tuned in our sims)

May 10th, 2016

new ΔS

etc...


Inspired by Blitz & Rosolowsky, we scale the molecular fraction with SPH pressure

(NOT the same quantity the observers use!)

Note. This phenomenonenologically includes a number of astrophysic processes and feedbacks (turbulence, magnetic fields, cosmic rays, early stellar feedback...) **PROS**: it's the reality. **CONS**: local, kpc-averaged (...but... resolution...)

More characteristics

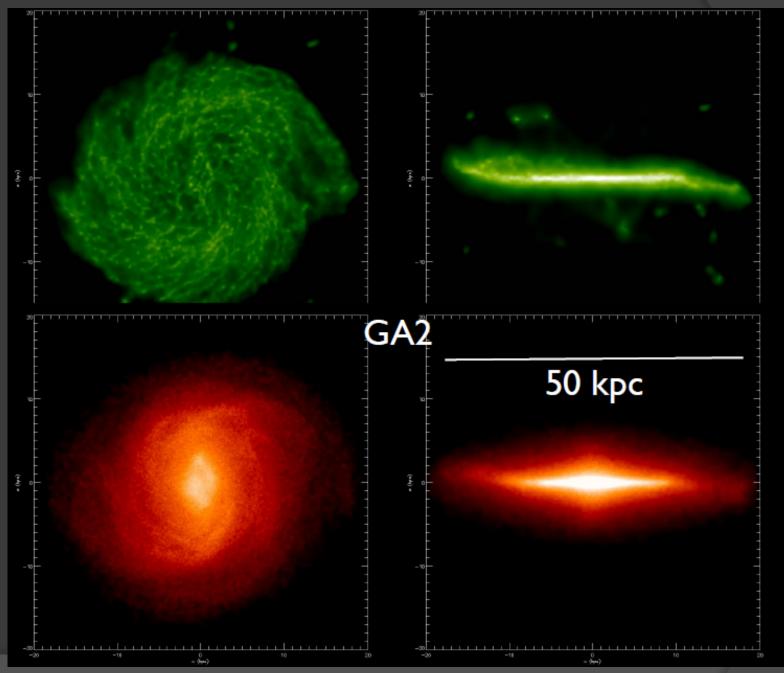
- Thermal energy
- Chemical ev
- Metal deper
- Stocastic kin also kinetic en the gas. Wind simulations, v WORK IN PR

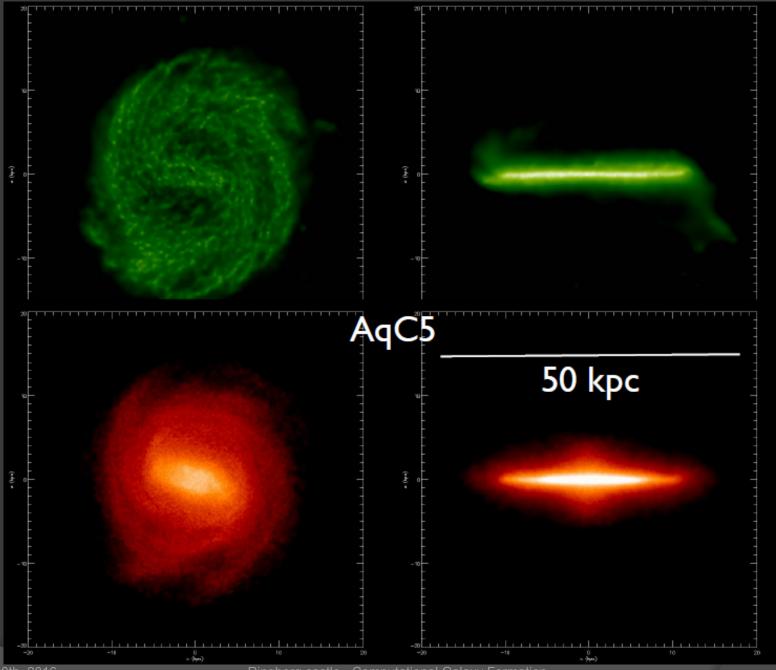
nal way

ceive ble from

• Note: at these resolution, the form of the coupling of E_{fb} with the gas is very important.

Cosmological disk galaxy simulations

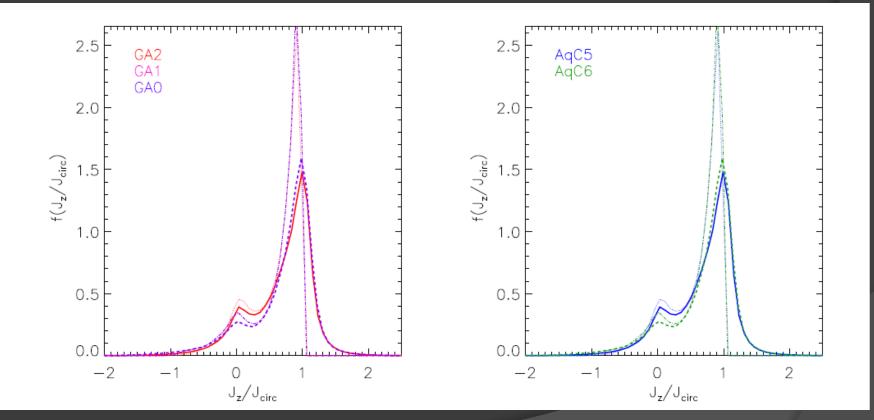

Simulation	$M_{\rm DM}$	$M_{\rm gas}$	ϵ_{Pl}	$M_{\rm Vir}$	$R_{\rm Vir}$	$N_{\rm DM}$	$N_{\rm gas}$	$N_{ m star}$
				$2.69\cdot 10^{12}$				26612
GA1	$1.5\cdot 10^7$	$2.8\cdot 10^6$	0.65	$2.72\cdot 10^{12}$	214.74	133164	63232	281685
GA2 (R1)	$1.6\cdot 10^6$	$3.0\cdot10^5$	0.325	$2.70 \cdot 10^{12}$	211.37	1201310	628632	2543495
GA3 (R2)	$1.7\cdot 10^5$	$3.2\cdot 10^4$	0.155	-	-	-	-	-
Aq-C-6 🏚	$1.3\cdot 10^7$	$4.8\cdot 10^6$	1.0	$2.21\cdot 10^{12}$	169.80	87340	43605	187823
Aq-C-5	$1.6\cdot 10^6$	$3.0 \cdot 10^5$	1.0	$2.26\cdot 10^{12}$	171.51	694617	355056	1585276


+ (Stoehr+, 2002, MNRAS, 355, 84)

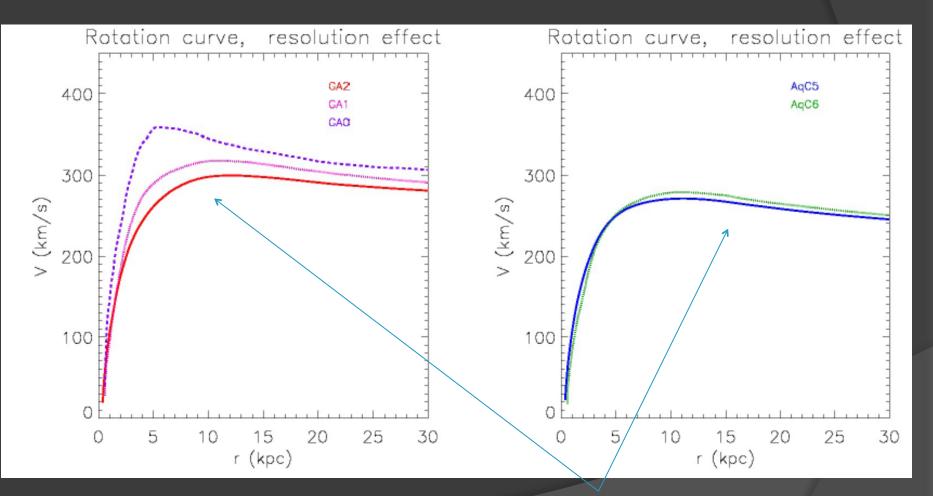
(See The Aquila comparison project, Scannapieco+, 2012, MNRAS, 423, 1726)

Murante, Monaco, Borgani, Tornatore, Dolag, Goz, 2015, MNRAS, 447, 178 Goz+, 2015, MNRAS, 447, 1774

```
Monaco+, 2012, MNRAS, 447, 1774
```

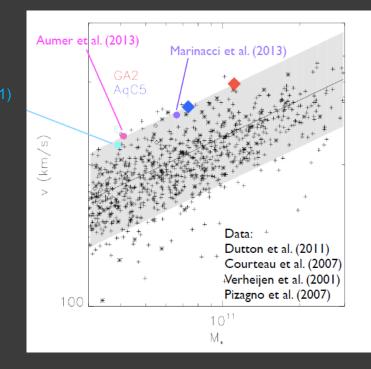



May 10th, 2016


Circularity Histograms

B/T=0.30 (GA0), 0.22 (GA1), 0.20 (GA2)

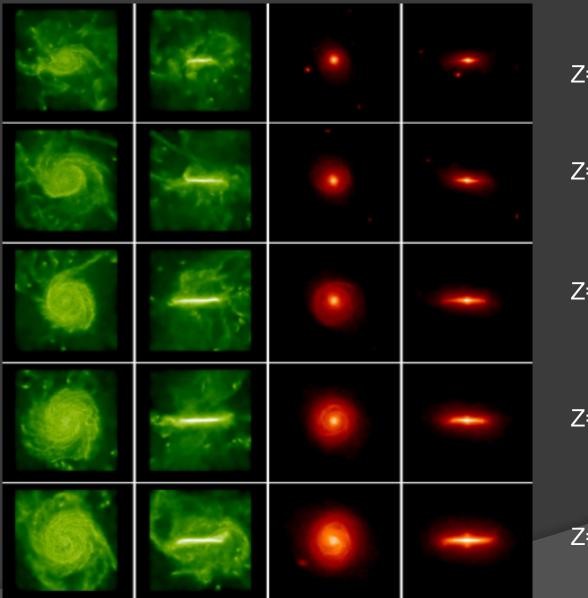
B/T=0.24 (Aq-C5), 0.23 (Aq-C6)



Circular Velocity Profiles



"weak convergence" wrt resolution...

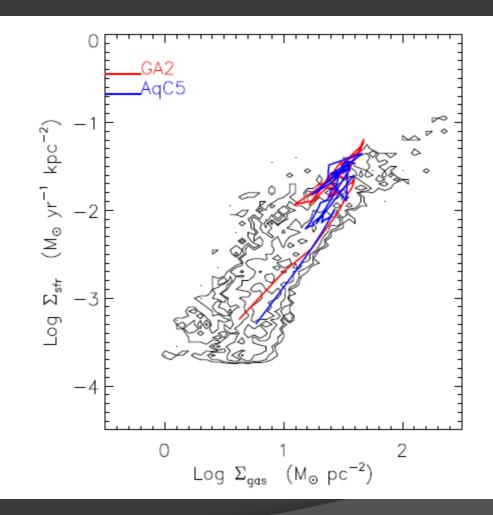

Tully-Fisher

Barion conversion efficiencies

Redshift evolution (AqC5)

Z=2.48

Z=2.02


Z=1.50

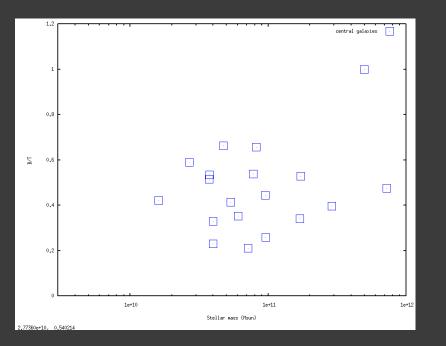
Z=1.01

Z=0.49

May 10th, 2016

Schmidt-Kennicutt relation

May 10th, 2016


MUPPI Boxes

- MEDIUM resolution: force: 0.5 kpc/h mass (gas): 5x10⁶ Msun/h
 About 20 galaxies more
 - massive than 10¹⁰ Msun/h

18 Mpc/h, 2x256³ particles

Bulge/Total mass ratios

A range of morphologies is present

Not all observables well fitted (e.g., z=0 mass function not satisfactory) Mass: stars, 7.2x10¹⁰ Msun; gas, $3.4x10^{10}$ f_{bar}: 0.075 (galaxy) 0.12 (halo) B/T: 0.21; mass of stellar disk: 5.65x10¹⁰ approx. 10⁵ baryon particles in the galaxy

Galaxy SED with GRASIL3D

Dominguez-Tenreiro+ 2014; Goz+, MNRAS submitted Comparison with observed emission in various bands

- Radiative Transfer post-processing code
- Particular attention to dust reprocessing
- Arbitrary geometry
- Modified to be used with MUPPI (e.g., H₂ given by the simulation)

GRASIL3D parameters calibrated againts PEP and LVL samples

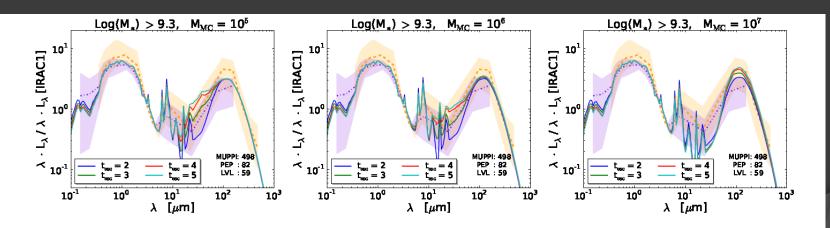
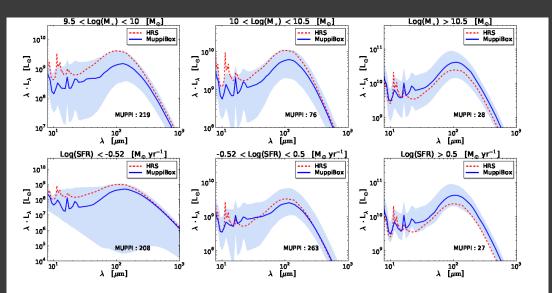
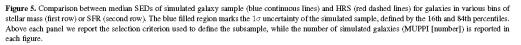




Figure B2. Calibration of GRASIL-3D parameters. In all plots only galaxies with $Log(M_*) > 9.3 M_{\odot}$ and $M_{MC} = 10^5 M_{\odot}$ (left), $M_{MC} = 10^6 M_{\odot}$ (middle), $M_{MC} = 10^7 M_{\odot}$ (right) are taken into account. In each plot all the SEDs are normalized to the IRAC1 band (3.6 μ m), continuous colour lines show the median values for different t_{esc}, while orange and violet dot-dashed lines represent the median value for PEP and LVL samples respectively, and finally the corresponding filled regions give the 1 σ uncertainty. Every plot reports the number of galaxies in the MUPPIBOX, PEP and LVL samples.

Galaxy SED with GRASIL3D: results

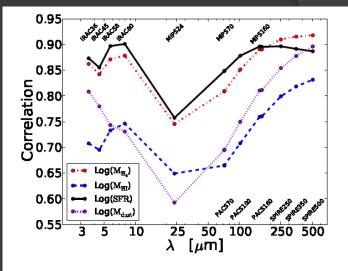


Figure 6. Spearman Correlation coefficients of IR luminosity in *Spitzer* (IRAC and MIPS) and *Herschel* (PACS and SPIRE) bands with $M_{\rm H_2}$ (dotdashed red line), $M_{\rm HI}$ (dashed blue line), SFR (continuous black line) and $M_{\rm dust}$ (dashed violet line).

Simulated SEDs in classes of galay masses and SFR, compared with HRS

Correlation between IR luminosities and various physical quantities

Developments

- MUPPI with modern SPH (Beck+ 2015) (done; needs parameter tuning; M. Valentini, Ph.D student)
- Improve FB schemes (ongoing: with M. Valentini)
- Include AGN feedback in MUPPI (ongoing; using Steinborn+ new model)
- Include non-equilibrium chemistry (by U. Maio) with selfconsistent formation of H₂ (1 PhD, D. Goz; 1 graduate, P. Di Cerbo; + U. Maio)
- Kinetic AGN feedback (ongoing; with P. Barai)

PRELIMINARY: H₂ chemistry

Umbero Maio's chemical network in MUPPI

Reazioni	Referenze per i tassi di reazione
$H + e^- \longrightarrow H^+ + 2e^-$	A97/Y06
$H^+ + e^- \longrightarrow H + \gamma$	A97/Y06
$He + e^- \longrightarrow He^+ + 2e^-$	A97/Y06
$He^+ + e^- \longrightarrow He + \gamma$	A97/Y06
$He^+ + e^- \longrightarrow He^{++} + 2e^-$	A97/Y06
$He^{++} + e^{-} \longrightarrow He^{+} + \gamma$	A97/Y06
$H + e^- \longrightarrow H^- + \gamma$	A97/Y06
$H^- + H \longrightarrow H_2 + e^-$	A97/Y06
$H + H^+ \longrightarrow H_2^+ + \gamma$	A97/Y06
$H_2^+ + H \longrightarrow H_2 + H^+$	A97/Y06
$H_2 + H \longrightarrow 3H$	A97
$H_2 + H^+ \longrightarrow H_2^+ + H$	S04/Y06
$H_2 + e^- \longrightarrow 2H + e^-$	ST99/GB03/Y06
$H^- + e^- \longrightarrow H + 2e^-$	A97/Y06
$H^- + H \longrightarrow 2H + e^-$	A97/Y06
$H^- + H^+ \longrightarrow 2H$	P71/GP98/Y06
$H^- + H^+ \longrightarrow H_2^+ + e^-$	SK87/Y06
$H_2^+ + e^- \longrightarrow 2H$	GP98/Y06
$H_2^+ + H^- \longrightarrow H + H_2$	A97/Y06
$D + H_2 \longrightarrow HD + H$	WS02
$D^+ + H_2 \longrightarrow HD + H^+$	WS02
$HD + H \longrightarrow D + H_2$	SLP98
$HD + H^+ \longrightarrow D^+ + H_2$	SLP98
$H^+ + D \longrightarrow H + D^+$	S02
$H + D^+ \longrightarrow H^+ + D$	S02
$He + H^+ \longrightarrow HeH^+ + \gamma$	RD82,GP98
$HeH^+ + H \rightarrow He + H_2^+$	KAH79, GP98
$HeH^+ + \gamma \longrightarrow He + H^+$	RD82, GP98

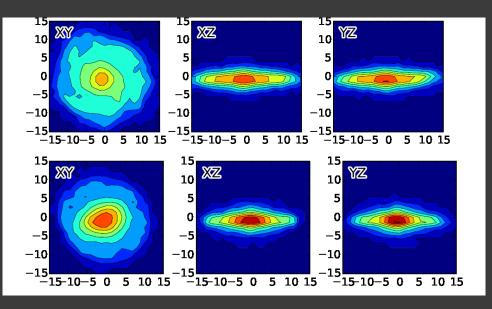
What the network does

Given ρ_{cold} , T_{cold} : Given Metals: Given T_{cmb} , UV background:

- Calculates new abundances in Δt
- Gives new temperature in Δt
- H₂ formation on metaldependent dust
- H₂ destruction from a FIXED UV field (from stars...)

Stellar Chemical evolution: Metals MUPPI: ρ_{cold} , T_{cold} SUBGRID

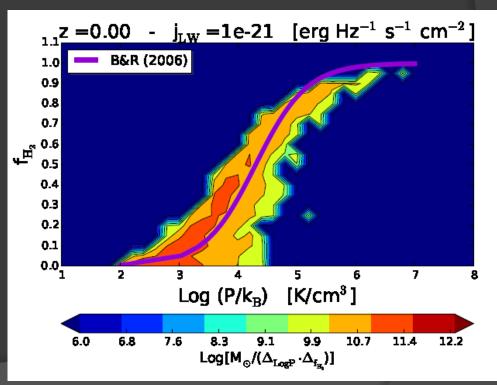
> Non-equilibrium chemistry: H₂ (+ others), T_{cold}


SPH timestep

RK MUPPI timesteps

May 10th, 2016

Ringberg castle - Computational Galaxy Formation


(scheme to be inverted)

AqC6, std

AqC6, H_2 , fixed UV

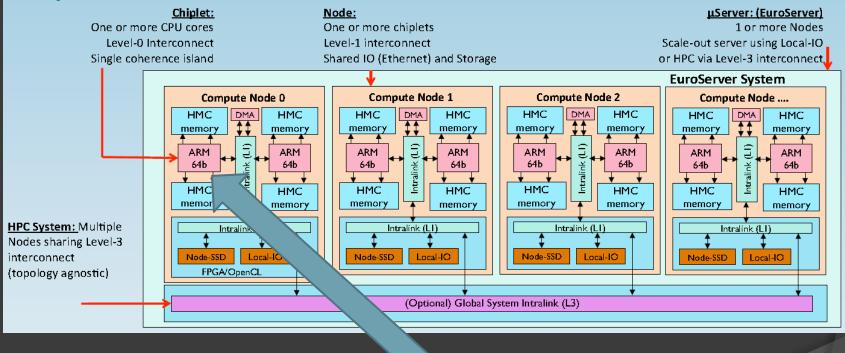
Predicted Blitz-Rosolowsky

May 10th, 2016

WHAT we do:

ExaNeSt develops and prototypes solutions for Interconnection Networks, Storage, and Cooling, as these have to evolve in order for the production of *exascale-level supercomputers* to become feasible. We tune real HPC Applications, and we use them to evaluate our solutions.

WHY we do it:


HPC is a precious tool for all of modern technology, science, and society. For the next generation of HPC systems, we need millions of low-power-consumption computing cores, tightly interconnected and packaged together and appropriately cooled, and with a new storage architecture.

New technologies..

System Architecture

This project is supposed to be "application driven"

Hierarchy	Scale	Performance	DRAM	Storage	Maximum Power	
Chiplet (Compute Unit)	Heterogeneous CPU/GPU compute unit	8 CPU 200 GFLOPS	Up to 6x 8GB	virtualized	15 W (16 GB)	
Interposer (3D-IC)	4 × Chiplet	32 CPU 800 GFLOPS	64 GB	virtualized	70 W	
Compute Node (Shared IO & Acceleration)	$2 \times Interposer,$ I/O + OpenCL FPGA	64 CPU 3.5 TFLOPS	128 GB	Host SSD 400-3400 GB	140 W + 20 W for I/O	
Compute Element (daughter board PCB)	$2 \times Nodes$	128 CPU 7 TFLOPS	256 GB	6.8 TB	320 W	
Mezzanine (mother- board for Elements)	4 × Elements	512 CPU 28 TFLOPS	1 TB	27 TB	1.28 kW + 120 W Interconnect	
Blade (deployment unit / hot-swap)	3 × Mezzanine	1536 CPU 84 TFLOPS	3 TB	81 TB	4.2 kW + 0.8 kW cooling	
Rack (metal frame)	$72 \times Blades$	110,592 OPU 6 PFLOPS	221 TB	5.8 PB	360 kW + 1 kW TOR switch	
Example HPC System	$100 \times Racks$	11 M CPU 600 PFLOPS	22 PB	58 PB	36 MW	
ExaScale Level	167 × Racks	1 ExeELOPS 18.5 M CPU	37 PR	1 ExaByte	60 MW	

THIS MEANS THAT WE NEED TO RE-DESIGN OUR CODES!!

Required level of

parallelism... Ringberg castle - Computational Galaxy Formation

Conclusions

- Our sub-resolution star formation and feedback models produces realistic disk galaxies (at moderate resolutions)
- Key ingredient: SF -> effective (kinetic) feedback producing high-z galactic winds, gas reacts strongly to energy injection.
- Results do depend on details of the fb scheme...
- Bonus: ISM (sub-grid, average) properties
- Properties of our galaxy populations in cosmological volumes still not in perfect agreement with several observations
- ...but promising halo mass dependance of winds mass-load and SEDs with GRASIL3D
- Sub-grid model useful at moderate resolution
- New technologies will require a significant technical effort