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Puzzles in galaxy formation: cosmic-ray feedback?
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Interactions of CRs and magnetic fields

CRs scatter on magnetic fields→ isotropization of CR momenta

CR streaming instability: Kulsrud & Pearce 1969

if vcr > vA, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ vA

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert a pressure on the thermal gas by means of
scattering off of Alfvén waves

Christoph Pfrommer Cosmic ray physics in galaxy formation



AGN feedback
Cosmic ray simulations

Introduction
Multi-frequency observations
AGN heating by cosmic rays

CR transport

total CR velocity vcr = v + vst + vdi (where v ≡ vgas)

CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

vst = − B√
4πρ

b ·∇Pcr

|b ·∇Pcr|
, vdi = −κdib

b ·∇εcr

εcr
,

energy equations with ε = εth + ρv2/2:

∂ε

∂t
+ ∇ · [(ε+ Pth + Pcr)v ] = Pcr∇ ·v − vst ·∇Pcr

∂εcr

∂t
+ ∇ · [Pcrvst + εcr(v + vst + vdi)] = −Pcr∇ ·v + vst ·∇Pcr

⇐⇒ ∂εcr

∂t
+ ∇ · [εcr(v + vst + vdi)] = −Pcr∇ · (v + vst)
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Messier 87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000) ν = 140 MHz (LOFAR/de Gasperin+ 2012)

high-ν: freshly accelerated CR electrons
low-ν: fossil CR electrons→ time-integrated AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening→ puzzle of “missing fossil electrons”
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Solutions to the “missing fossil electrons” problem

solutions:

special time: M87 turned on
∼ 40 Myr ago after long
silence
⇔ conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (Birzan+ 2012)

Coulomb cooling removes
fossil electrons
→ efficient mixing of CR
electrons and protons with
dense cluster gas
→ predicts γ rays from
CRp-p interactions:
p + p → π0 + . . .→ 2γ + . . .
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The gamma-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation (?) Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!

Christoph Pfrommer Cosmic ray physics in galaxy formation



AGN feedback
Cosmic ray simulations

Introduction
Multi-frequency observations
AGN heating by cosmic rays

Estimating the CR pressure in M87

hypothesis: low state of γ-ray emission traces π0 decay in ICM:

X-ray data→ n and T profiles

assume Xcr = Pcr/Pth (heating
due to streaming CRs in
steady state)

Fγ ∝
∫

dV Pcrn enables to
estimate Pcr/Pth = 0.3
(allowing for Coulomb cooling
with τCoul = 40 Myr)

Rieger & Aharonian (2012)

→ in agreement with non-thermal pressure constraints from
dynamical potential estimates (Churazov+ 2010)
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Cosmic-ray heating vs. radiative cooling (1)
CR Alfvén-wave heating:
(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

Hcr = −vA ·∇Pcr = −vA

(
Xcr∇r 〈Pth〉Ω +

δPcr

δl

)
Alfvén velocity vA = B/

√
4πρ with

B ∼ Beq from LOFAR and ρ from X-ray data

Xcr inferred from γ rays

Pth from X-ray data
pressure fluctuations δPcr/δl (e.g., due to weak shocks of M ' 1.1)

radiative cooling:
Crad = neni Λcool(T ,Z )

cooling function Λcool with Z ' Z�,
all quantities determined from X-ray data
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Cosmic-ray heating vs. radiative cooling (2)
Global thermal equilibrium on all scales in M87
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Local stability analysis (1)

heating

kT

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)
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Local stability analysis (1)
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Local stability analysis (1)

cooling

unstable FP

region of stability region of instability

separatrix

heating

stable FP

kT

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations

Christoph Pfrommer Cosmic ray physics in galaxy formation



AGN feedback
Cosmic ray simulations

Introduction
Multi-frequency observations
AGN heating by cosmic rays

Local stability analysis (2)
Theory predicts observed temperature floor at kT ' 1 keV
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Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at kT ' 1 keV

Matsushita+ (2002)
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Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
→ CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are
injected into the ICM and caught in a
downdraft that is excited by the rising
bubbles
→ CR advection with flux-frozen field
→ adiabatic CR compression and
energizing: Pcr/Pcr,0 = δ4/3 ∼ 20 for
compression factor δ = 10

(3) CR escape and outward stream-
ing→ CR Alfvén-wave heating

CR streaming
and diffusion

by bubble disruption
CR injection

adiabatic compression
and CR energization

CR advection:

Christoph Pfrommer Cosmic ray physics in galaxy formation



AGN feedback
Cosmic ray simulations

Introduction
Multi-frequency observations
AGN heating by cosmic rays

Conclusions on cosmic-ray heating in M87

LOFAR puzzle of “missing fossil electrons” in M87 solved by
mixing with dense cluster gas and Coulomb cooling

predicted γ rays identified with low state of M87
→ estimate CR-to-thermal pressure of Xcr = 0.3

CR Alfvén wave heating balances radiative cooling on all scales
within the central radio halo (r < 35 kpc)

local thermal stability analysis predicts observed temperature
floor at kT ' 1 keV
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AREPO simulations – flowchart
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Shock acceleration
Galaxy simulations
Cosmological simulations

CR shock acceleration
Comparing simulations to novel exact solutions that include CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (2016)
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Sedov explosion

density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ρ

specific thermal energy

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10-3

10-2

10-1

100

101

102

103

u
th

C.P., Pakmor, Schaal, Simpson, Springel (2016)

Christoph Pfrommer Cosmic ray physics in galaxy formation



AGN feedback
Cosmic ray simulations

Shock acceleration
Galaxy simulations
Cosmological simulations

Sedov explosion with CR acceleration
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Shock acceleration
Galaxy simulations
Cosmological simulations

Sedov explosion with CR acceleration

adiabatic index shock evolution

C.P., Pakmor, Schaal, Simpson, Springel (2016)
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Shock acceleration
Galaxy simulations
Cosmological simulations

Sedov explosion with CR acceleration

pressure density

C.P., Pakmor, Schaal, Simpson, Springel (2016)
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Time evolution of SFR and energy densities
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CR pressure feedback suppresses SFR more in smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic dynamo faster in Milky Way galaxies than in dwarfs
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MHD galaxy simulation without CRs
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MHD galaxy simulation with CRs
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Gas density in galaxies from 1010 to 1012 M�
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CR energy density in galaxies from 1010 to 1012 M�
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Temperature-density plane: CR pressure feedback
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Cosmological simulations with cosmic rays
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Cosmological simulations with cosmic rays
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CR shock acceleration at structure formation shocks
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Cosmic ray simulations

projects:

cosmological galaxy formation simulations:
CR-driven galactic winds, magnetic dynamo→ Rüdiger’s talk

ISM physics: CR-driven outflows→ Christine Simpson

radio mode feedback: cosmic-ray heating

non-thermal cluster emission: radio halos and relics

→ versatile CR-MHD code to explore the physics of galaxy formation
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CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN
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Literature for the talk

AGN feedback by cosmic rays:
Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
779, 10.

Simulating cosmic rays:
Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on
a moving mesh, 2016.
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Additional slides
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Self-consistent CR pressure in steady state

CR streaming transfers energy per unit volume to the gas as

∆εth = −τAvA ·∇Pcr ≈ Pcr = XcrPth,

where τA = δl/vA is the Alfvén crossing time and δl the CR
pressure gradient length

comparing the first and last term suggests that a constant
CR-to-thermal pressure ratio Xcr is a necessary condition if CR
streaming is the dominant heating process

→ thermal pressure profile adjusts to that of the streaming CRs!
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Critical length scale of the instability (∼ Fields length)

CR streaming transfers energy to a gas parcel with the rate

Hcr = −vA ·∇Pcr ∼ fsvA|∇Pcr|,

where fs is the magnetic suppression factor

line and bremsstrahlung emission radiate energy with a rate Crad

limiting size of unstable gas parcel since CR Alfvén-wave heating
smoothes out temperature inhomogeneities on small scales:

λcrit =
fsvAPcr

Crad

however: unstable wavelength must be supported by the system
→ constraint on magnetic suppression factor fs
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Critical length scale of the instability (∼ Fields length)
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CR heating dominates over thermal conduction
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Impact of varying Alfvén speed on CR heating

global thermal equilibrium:
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local stability criterion:
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parameterise B ∝ ραB , which implies vA = B/
√

4πρ ∝ ραB−1/2:

αB = 0.5 is the geometric mean, implying vA = const.

αB = 0 for collapse along B, implying vA,‖ ∝ ρ−1/2

αB = 1 for collapse perpendicular to B, implying vA,⊥ ∝ ρ1/2
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