Star formation in the ISM is surprisingly inefficient

THE GAS CONSUMPTION TIMESCALE OF STAR FORMATION

depletion time:

$$t_{\rm dep} \equiv M_{\rm gas}/\dot{M}_*$$

gravitational free-fall time:

$$t_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho}}$$

dimensionless "efficiency" of star formation:

$$\epsilon_{\rm ff} \equiv \frac{t_{\rm ff}}{t_{\rm dep}}$$

observed is:
$$\dot{\Sigma}_{\star} \simeq \epsilon_{\rm ff} \frac{\Sigma_{\rm H_2}}{t_{\rm ff}}$$
$$\epsilon_{\rm ff} \sim 0.01$$

Krumholz et al. (2014)

Abundance matching gives the expected halo mass – stellar mass relation in ΛCDM

MODULATION OF GLOBAL STAR FORMATION EFFICIENCY AS A FUNCTION OF HALO MASS

Small scale star formation theories aim to explain why

 $\epsilon_{\rm ff} \sim 0.01$

Galaxy formation theories need to (additionally) explain why

This disconnect is often exploited by galaxy formation studies – they can yield the same result for widely different assumptions about $\varepsilon_{\rm ff}$ on the scale of molecular clouds.

But what physics is responsible for feedback in the first place?

- Supernova explosions (energy & momentum input)
- Stellar winds
- AGN activity

- Radiation pressure on dust •
- Photoionizing UV background and Reionization
- Modification of cooling through local UV/X-ray flux ullet
- **Photoelectric heating** •
- Cosmic ray pressure
- Magnetic pressure and MHD turbulence
- TeV-blazar heating of low density gas
- Exotic physics (decaying dark matter particles, etc.) \bullet

Kepler's Supernova

Ciardi al. (2003)

Gneding & Hollon (2012)

Roadblock II: The precise momentum input of supernova is not accurately understood

SOME UNCERTAINTIES

- If supernovae go through a successful Sedov-Taylor phase, their momentum may be boosted by factors 5-10 or more.
- Radiative cooling losses in a supernova are uncertain – perhaps only 10% of the energy may be efficiently thermalized and drive an energy-driven wind (Thornton et al. 1998)
- The radiation may be trapped by dust, such that through multi-scatterings the radiation pressure may be boosted significantly.
- Lack of stability of feedback driven shells may limit the amount of momentum input (Krumholz & Thompson 2013)

Supernova remnant Cassiopeia A

$$\dot{p}_{\rm rad} \sim \tau_{\rm IR} L/c$$

 $\tau_{\rm IR} = 10 - 100 ?$

Radiation pressure on dusty shells has been suggested as a means to efficiently expell gas from star forming regions and galaxies

PHOTONS AS LARGE-SCALE GAS MOVERS

$$\frac{d}{dt}\left(M_{\rm sh}v\right) = -\frac{GMM_{\rm sh}}{r^2} + \left(1 + \tau_{\rm IR} - e^{-\tau_{\rm UV}}\right)\frac{L}{c}$$

Murray, Quataert & Thompson (2005) Murray, Menard & Thompson (2011)

The Eddington luminosity is defined as the *L* for which the radiation pressure just balances gravity.

Optically thick case to UV and IR:

$$L_{\rm Edd} = \frac{G \, c \, M(r) M_{\rm sh}(r)}{r^2}$$

(Note: dynamics of a fixed mass shell radially unstable.)

Isothermal sphere halo model:

$$M(< r) = rac{2\sigma^2 r}{G} \qquad M_{
m sh} = f_g \, M$$
 $L_{
m Edd} = rac{4f_g c}{G} \, \sigma^4 \qquad { extsf{Faber-Jackson}\ relation ?}$

Optically thin case:

$$1 - e^{-\tau} \simeq \tau = \kappa \rho \Delta l = \kappa \frac{M_{\rm sh}}{4\pi r^2}$$

$$L_{\rm Edd} = \frac{4\pi c \, GM}{\kappa}$$

(Note: For a thin shell of constant mass, the acceleration becomes independent of its mass.)

If there are optically thin conditions around the BH for electron scattering and it shines with Eddington ratio Γ :

$$L_{\rm BH} = \frac{4\pi c \, G M_{\rm BH}}{\Gamma \kappa_{\rm el}}$$

Identifying this with the optically thick Eddington luminosity above gives:

$$M_{
m BH}=rac{f_g\Gamma c}{\pi G^2\kappa_{
m el}}\sigma^4~~~{
m M-\sigma}$$
 relation ?

There are multiple caveates to the simple radiation pressure idea

OBSTACLES FOR EFFICIENT RADIATION PRESSURE FEEDBACK

- galaxies radiate well below their Eddington rate (Sokrates & Sironi 2013)
- timescale for RP effects quite long thermal pressure from photoionization acts earlier (Sales et al. 2013)
- radial instability of shells allows radiation to escape (Krumholz & Thompson, 2012)
- analytic models neglect swept up CGM gas – this can easily stop the shell
- In RHD simulations of star formation regulation, RP does not reach the required p_{*}/m_{*}, falling short by more than a factor of 10 (Skinner & Ostriker 2015, Rosdahl, Schaye, Teyssie, & Agertz 2015)
- Observationally, thermal pressure from photoionization greatly dominates over radiation pressure in HII regions (Lopez, Krumholz, et al. 2014)

Roadblock III: We really need to do radiation-magnetohydrodynamics.

Aside from computational cost, there are lingering accuracy issues in different RHD approximations.

Example: Calculations done with two different radiation-hydrodynamic schemes for impacting a well-coupled gas-dust atmosphere

flux-limited diffusion (FLD): Using this, Krumholz & Thompson (2012) found radiation pressure to be ineffective in driving an outflow due to the onset of Rayleigh-Taylor instabilities that let the radiation eventually escape.

variable Eddington tensor (VET): Based on this, Davis et al. (2014) find a qualitatively different outcome. While RT instabilities do develop, continuous net acceleration of gas nevertheless develops and leads to blow out.

Davis et al. (2014)

Roadblock IV: Understanding the BH-galaxy connection

quasars

How does AGN energy couple to halo gas?

galaxies

Galaxy formation and accretion on supermassive black holes appear to be closely related

BLACK HOLES MAY PLAY AN IMPORTANT ROLE IN GALAXY FORMATION

Observational evidence suggests a link between BH growth and galaxy formation:

- $M_B \sigma$ relation
- Similarity between cosmic SFR history and quasar evolution
- Local BH density matches integrated quasar light
- Downsizing observed for BH growth, just like for galaxies

Theoretical models often assume that BH growth is self-regulated by **strong** feedback:

- Removal of gas around the hole once a crtitical $\ensuremath{\mathsf{M}_{\mathsf{B}}}$ is reached

Silk & Rees (1998), Wyithe & Loeb (2003)

Quasars release plenty of energy

$$L_Q \sim 10^{12} L_{\odot} \qquad t_Q \sim 10^7 - 10^8 \,\mathrm{yr}$$

$$E_Q \sim 10^{60} - 10^{61} \, \mathrm{erg}$$

a billion supernovae !

Total available feedback energy from BHs is comparable to that of supernovae

$$\begin{split} \rho_{\rm BH} \simeq 0.001 \,\rho_{\star} & E_{\rm BH}/V \simeq 0.1 \,\rho_{\rm BH} \,c^2 \\ E_{\rm SN}/V \simeq \frac{10^{51} \,\rm erg}{100 \,\rm M_{\odot}} \,\rho_{\star} \end{split}$$

$$\frac{E_{\rm BH}}{E_{\rm SN}} \simeq 1.8$$

The idea of a self-regulated growth of black holes is not universally accepted

ALTERNATIVE EXPLANATIONS OF BLACK HOLE – GALAXY CORRELATIONS

Jahnke & Maccio (2011): Hierarchical merging may create black hole - galaxy scaling relations

Angles-Alcazar et al. (2013, 2016): Self-regulation not required if Bondi doesn't apply and instead torque-limited accretion detemines BH growth. Common gas supply can then lead to co-evolution of black-holes and galaxies

Li, Kauffmann, Heckman et al. (2008):

Find that close pairs of galaxies have enhanced SFR, but no evidence for increased AGN activity.

But: Hennawi et al. (2006), Serber et al. (2006):

Find some evidence for enhanced small scaleclustering of optical quasars.

Quenching needs to happen effectively in ΛCDM to reproduce the bright end of the galaxy luminosity function

IMPACT OF THE ILLUSTRIS++ AGN MODEL

We need sudden quenching setting in at around $M_{halo} \sim 10^{12}$

- 1. Need more capable zooms
- 2. Need systematic approaches to combine calculations on different scales

Jiang, Stone & Davis (2014)

Gravitational softening lengths cannot be chosen independently of the mass resolution in collisionless dynamics

THE RACE TO THE BOTTOM

Gravitational softening lengths cannot be chosen independently of the mass resolution in collisionless dynamics

THE RACE TO THE BOTTOM

Gravitational softening lengths cannot be chosen independently of the mass resolution in collisionless dynamics

THE RACE TO THE BOTTOM

Roadblock VI: Bridging the temporal dynamic range

Spatial adaptivity and huge variations of density and temperature create a **wide range of timestep sizes**

$$\Delta t = C_{\rm CFL} \, \frac{h}{c_s + |\tilde{\mathbf{v}}|} = C_{\rm CFL} \, \frac{m_g^{1/3} \, \rho^{-1/3}}{c_s + |\tilde{\mathbf{v}}|} \qquad \Delta t = \eta \, \sqrt{\frac{3\pi}{32G\rho}} \propto \rho^{-1/2}$$

Causes all sorts of problems and performance issues....

Makes people sometimes resort to tricks, e.g.:

"When the outflowing winds dominate the material in a single cell as sometimes happens in our simulations, this high temperature can slow down the simulation substantially and cause other numerical problems associated with a high density contrast. To ameliorate this issue we cap the wind specific energy at 10^{8.5} K." Nature (2016)

Execution times of different levels of the timestep hierarchy in Illustris

Syn	c-Point	912913,	Time:	0.999995,	Redshi	ft:	4.62	2727e-06,	System	nstep:	2.31	361e-06,	, Dloga:	2.31363e-06
0cci	upied ti	mebins:	non-ce	ells c	ells		dt			cumula	ative	A D	avg-time	e cpu-frac
	bin=16	48	6656310	2 454263	8866	0	.0005	592288851	1	L19070	84302	*	319.98	3 16.0%
	bin=15	10	2955863	49693	0277	0	.0002	296144425		24978	82334		162.70	9 8.1%
	bin=14	4	5619072	18582	4857	0	.0001	L48072213		9713	93419		128.60) 12.9%
	bin=13	2	1620166	9 4256	8324	0	.0000	074036106		3293	77837		65.53	3 13.1%
	bin=12		6465112	20 274	5964	0	.0000	037018053		706	07844		28.49	9 11.4%
	bin=11		300410	9 18	6565	0	.0000	018509027		32	10760		10.45	5 8.4%
	bin=10		ç	9 1	8602	0	.0000	09254513			20086		2.93	l 4.7%
Х	bin= 9		2	23	1236	0	.0000	004627257			1385	<	2.75	5 8.8%
Х	bin= 8			4	122	0	.0000	02313628			126		2.62	2 16.8%
Total active:		e:	2	 ?7	1358	Sur	n:	1385						

Problem: The short timesteps take way too long and end up dominating the CPU budget.

Advancing the system over the time-interval corresponding to the largest timestep takes:

319.98 + 162.70 + 2 * 128.60 + 4 * 65.53 + 8 * 28.49 + 16 * 10.45 + 32 * 2.91 + 64 * 2.75 + 128 * 2.62 = 2001.60

If however the more thinly occupied timesteps would consume time proportional to the number of active particles, we would expect in the most optimistic case:

319.98 + 67.13 + 2 * 26.10 + 4 * 8.85 + 8 * 1.90 + 16 * 0.086 + 32 * 0.00054 + 64 * 3.72e-05 + 128 * 3.39e-06 = 491.3

This is in principle a factor of 4 in speed up.

A hierarchical Hamiltonian split has been implemented in AREPO to achieve a clean separation of timescales AVOIDING OVERHEADS IN THE TAIL OF THE TIMESTEP DISTRIBUTION

Recall second-order symplectic integration:

$$H = H_1 + H_2$$

$$E(H, \Delta t) \simeq E\left(H_1, \frac{\Delta t}{2}\right) \circ E(H_2, \Delta t) \circ E\left(H_1, \frac{\Delta t}{2}\right)$$

For a Hamiltonian system P of particles, define a split into a slow system S (Δ t), and a fast system F (Δ t/2)

$$H = H_{\rm kin} + H_{\rm pot}$$
 $P = S + F$

We can now write the system as:

$$\begin{split} H &= H_{\rm kin}^{\rm S} + H_{\rm pot}^{\rm S} + H_{\rm kin}^{\rm F} + H_{\rm pot}^{\rm FS} + H_{\rm pot}^{\rm FS} \\ H &= H^{\rm S} + H^{\rm F} + H_{\rm pot}^{\rm FS} \end{split}$$

A hierarchical Hamiltonian split has been implemented in AREPO to achieve a clean separation of timescales

AVOIDING OVERHEADS IN THE TAIL OF THE TIMESTEP DISTRIBUTION

$$H = H^{\rm S} + H^{\rm F} + H^{\rm FS}_{\rm pot}$$

We can now define a time-integration operator as:

$$E(H, \Delta t) \simeq E\left(H_{\text{pot}}^{\text{FS}}, \frac{\Delta t}{2}\right) \circ E\left(H^{\text{F}}, \frac{\Delta t}{2}\right) \circ E(H^{\text{S}}, \Delta t) \circ E\left(H^{\text{F}}, \frac{\Delta t}{2}\right) \circ E\left(H_{\text{pot}}^{\text{FS}}, \frac{\Delta t}{2}\right)$$

Expressed as kick and drift operators, this becomes:

$$E(H,\Delta t) \simeq K_{\rm S}^{\rm F}\left(\frac{\Delta t}{2}\right) K_{\rm F}^{\rm S}\left(\frac{\Delta t}{2}\right) K_{\rm F}^{\rm F}\left(\frac{\Delta t}{4}\right) D_{\rm F}\left(\frac{\Delta t}{2}\right) K_{\rm F}^{\rm F}\left(\frac{\Delta t}{4}\right) K_{\rm S}^{\rm S}\left(\frac{\Delta t}{2}\right) D_{\rm S}\left(\Delta t\right) K_{\rm S}^{\rm S}\left(\frac{\Delta t}{2}\right) \cdots$$

$$\texttt{commutes with } D_{\rm F} \text{ and can be moved}$$

This can be simplified into:

$$E(H,\Delta t) \simeq K_{\rm P}^{\rm P}\left(\frac{\Delta t}{2}\right) K_{\rm F}^{\rm F}\left(-\frac{\Delta t}{4}\right) D_{\rm F}\left(\frac{\Delta t}{2}\right) K_{\rm F}^{\rm F}\left(\frac{\Delta t}{4}\right) D_{\rm S}\left(\Delta t\right) \cdots$$

- Can be applied hierarchically
- Momentum conserving despite individual timesteps

Execution times of different levels of the timestep hierarchy in Illustris++

Syn	c-Point 503	34495, Time: 0).235176, Reds	hift: 3.25213, Sys	stemstep: 1.70035e	-08, Dloga: 7	.23009e-08	
0cc	upied timeb	oins: gravity	hydro	dt	cumul-grav	cumul-sph A [) avg-time	cpu-frac
	bin=46	11812708589	5771513667	0.00029614442	5 11879513795	5794868748	183.75	20.5%
	bin=45	38994455	14513112	0.000148072213	B 66805206	23355081	43.02	4.8%
	bin=44	18003771	6143342	0.00007403610	5 27810751	8841969	30.57	6.8%
	bin=43	8016377	2070979	0.000037018053	3 9806980	2698627	15.08	6.7%
	bin=42	1661929	499560	0.00001850902	7 1790603	627648	6.41	5.7%
	bin=41	97086	96711	0.000009254513	3 128674	128088	2.30	4.1%
	bin=40	21885	21756	0.00000462725	7 31588	31377	1.54	5.5%
	bin=39	7264	7197	0.00000231362	3 9703	9621	0.84	6.0%
	bin=38	1917	1903	0.000001156814	4 2439	2424	0.32	4.6%
	bin=37	443	442	0.00000057840	7 522	521	0.20	5.6%
Х	bin=36	65	65	0.00000289204	4 79	79 -	< 0.11	6.2%
Х	bin=35	12	12	0.000000144602	2 14	14	0.08	8.9%
Х	bin=34	2	2	0.0000007230	1 2	2	0.06	14.4%
Total active.		70	70					
IULAL ALLIVE:		19	19					

We can now do more than ~10 million steps – and in fact we have to.

Summary points

- Processes regulating star formation and galaxy accretion may be different
- Radiation pressure? (on life support)
- Galaxy formation at the bright end requires black hole feedback
- Need radiation magnetohydrodynamics with accurate self-gravity
- Dynamic range in time scales is arguably the most serious challenge for parallel codes
- Accuracy of the treatment of gravity for dark matter and stars deserves more attention

