Modeling dust in large-scale simulations: first attempts

Mark Vogelsberger (MIT), Ryan McKinnon (MIT), Paul Torrey (MIT/Caltech), Christopher Hayward (Caltech)

Large-scale Dust Questions

- · dust mass function
- · cosmic dust density
- dust rich high redshift galaxies
- dust-to-gas ratios
- dust-to-stellar-mass ratios
 - → constraining galaxy formation models

multi zone models of galaxy formation coupled to dust physics: no cosmological context, no detailed galaxy formation physics, no large scale statistics

e.g., Dwek & Scalo 1979, 1980, Dwek 1998, Lisenfeld & Ferrara 1998, Hirashita 1999, Edmunds 2001, Inoue 2003, Calura+ 2008, Asano+ 2013, Zhukovska & Henning 2013, Rowlands+ 2014

Goal: large-scale galaxy formation simulations with dust physics

ingredients of a most simplistic dust model for large-scale cosmological hydrodynamical galaxy formation simulations:

1) dust production in stellar outflows (low mass stars) and stellar ejecta (high mass stars)

2) dust growth in ISM as gas-phase atoms collide with existing grains

3) dust destruction in ISM through SN shocks

approach:

• implement dust model in Arepo Springel 2010 McKinnon+ 2016 [M16 model]

- incorporate dust production into stellar evolution code of Illustris model Vogelsberger+ 2013, Torrey+2013, Vogelsberger+2014, Genel+2014, Sijacki+2014
- implement sub-resolution models for small-scale dust physics
- dust as passive scalar
- study isolated Milky Way-like galaxies and compare to observational data Springel 2010, Marinacci+ 2013

1) Dust Production:

during stellar evolution a certain amount of mass of a given chemical species is assumed to condense into dust; the rest goes into the gas phase

$$\begin{split} \underline{AGB \ dust \ production:} \\ \Delta M_{i,\text{dust}} &= \begin{cases} \delta_{\text{C}}^{\text{AGB},\text{C/O} > 1} (\Delta M_{\text{C}} - 0.75 \ \Delta M_{\text{O}}) & \text{if} \ i = \text{C} \\ 0 & \text{else}, & \text{-carbon type} \end{cases} \\ & \Delta M_{i,\text{dust}} = \begin{cases} 0 & \text{if} \ i = \text{C} \\ 10 \sum_{\substack{j = \text{Mg, Si, Fe} \\ \delta_i^{\text{AGB},\text{C/O} < 1} \Delta M_j / \mu_j} & \text{if} \ i = \text{O} \\ \delta_i^{\text{AGB},\text{C/O} < 1} \Delta M_i & \text{else,} & \text{-silicate type} \end{cases} \end{split}$$

SN dust production:

$$\Delta M_{i,\text{dust}} = \begin{cases} \delta_{\text{C}}^{\text{SN}} \Delta M_{\text{C}} & \text{if } i = \text{C} \\ 10 \sum_{\substack{j = \text{Mg, Si, Fe} \\ \delta_i^{\text{SN}} \Delta M_i}} \delta_j^{\text{SN}} \Delta M_j / \mu_j & \text{if } i = \text{O} \end{cases}$$

e.g. Draine 1990, Dwek 1998

2) Dust Growth: mass of dust in the ISM increases over time as gas-phase atoms collide with grains

atom dust
collisions
$$\longrightarrow \frac{dN_{d,A}}{dt} = (\alpha \pi a^2 v) n_g n_{d,A}$$

growth equation for specific element A

 $N_{d,A}$: # density of atoms within dust n_g : # density of atoms in gas n_d : # density of dust

- α sticking probability (*P* for particle to stick to dust after collision)
- *a* size (cross section = area; affected by shattering/coagulation)
- v mean thermal velocity at given gas temperature $\mathcal{T}~(8kT/\pi m_A)^{1/2}$

Within each cell integrate for each element:

$$\left(\frac{\mathrm{d}M_{i,\mathrm{dust}}}{\mathrm{d}t}\right)_{\mathrm{g}} = \left(1 - \frac{M_{i,\mathrm{dust}}}{M_{i,\mathrm{metal}}}\right) \left(\frac{M_{i,\mathrm{dust}}}{\tau_{\mathrm{g}}}\right)$$

where the local growth time scale is given by:

$$\tau_{\rm g} = \tau_{\rm g}^{\rm ref} \left(\frac{\rho^{\rm ref}}{\rho}\right) \left(\frac{T^{\rm ref}}{T}\right)^{1/2}$$

silicate:

$$\tau = 1.61 \times 10^8 \left(\frac{a}{0.1 \,\mu\text{m}}\right) \left(\frac{Z}{Z_{\odot}}\right)^{-1} \left(\frac{n_{\text{H}}}{10^3 \,\text{cm}^{-3}}\right)^{-1} \\
\times \left(\frac{T_{\text{gas}}}{10 \,\text{K}}\right)^{-1/2} \left(\frac{S}{0.3}\right)^{-1} \,\text{yr}$$

graphite:

$$\tau = 0.993 \times 10^8 \left(\frac{a}{0.1 \,\mu\text{m}}\right) \left(\frac{Z}{Z_{\odot}}\right)^{-1} \left(\frac{n_{\text{H}}}{10^3 \,\text{cm}^{-3}}\right)^{-1} \times \left(\frac{T_{\text{gas}}}{10 \,\text{K}}\right)^{-1/2} \left(\frac{S}{0.3}\right)^{-1} \,\text{yr}$$
Hirashita 2012

straightforward to extend to depend on arbitrary local cell properties

e.g., Drain 1990, Dwek 1998, Hirashita 1999, Yozin & Bekki 2014, Zhukovska 2014, Bekki 2015

3) Dust Destruction: SN shocks are the dominating mechanism for dust destruction in the ISM

Within each cell integrate for each element:

$$\left(\frac{\mathrm{d}M_{i,\mathrm{dust}}}{\mathrm{d}t}\right)_{\mathrm{d}} = -\frac{M_{i,\mathrm{dust}}}{\tau_{\mathrm{d}}}$$

where the local destruction time scale is given by:

$$\tau_{\rm d} = \frac{M_{\rm g}}{\epsilon \,\gamma \, M_{\rm s}(100)}$$

 $\epsilon\,$: average effective shock destruction efficiency

 $M_{
m g}$: gas mass in cell γ : local SN II rate based on stellar evolution model $M_{
m s}(100)$: gas mass shocked to at least 100 km/s

Dust Model Variations

Dust Model Variations

Dust Model Variations

Run	R_{200} [kpc]	$\begin{array}{c} M_{\rm gas} \\ [10^{10}{\rm M}_\odot] \end{array}$	$\frac{M_{\rm dm}}{[10^{10}{\rm M}_\odot]}$	$M_{ m dust}$ $[10^8 { m M}_{\odot}]$	$\frac{M_{\rm gas,disc}}{[10^{10}~{\rm M}_\odot]}$	$M_{ m dust,disc}$ $[10^8 { m M}_{\odot}]$	$N_{\rm gas}$	$N_{ m dm}$	$m_{ m gas}$ $[10^5{ m M}_{\odot}]$	$m_{ m dm}$ $[10^5 { m M}_\odot]$
A5	237.5	11.62	182.29	5.61	4.52	3.79	211527	690478	5.03	26.40
B5	183.0	4.22	78.18	3.48	1.37	1.82	119386	518981	3.35	17.59
C5	233.5	11.11	175.93	5.98	3.47	3.47	253836	814834	4.11	21.59
D5	240.7	15.18	195.56	12.20	6.12	7.66	319074	846419	4.40	23.10
E5	206.7	6.14	114.16	5.35	1.09	1.00	179039	652270	3.33	17.50
F5	208.0	9.26	113.67	9.48	3.58	5.55	375068	942365	2.30	12.06
G5	201.9	9.94	95.99	7.78	5.20	5.74	317798	769854	2.83	14.88
H5	180.1	2.61	76.24	1.67	0.20	0.34	87369	588050	2.96	15.56
C4	232.5	6.82	159.19	3.89	1.44	1.76	1265814	5898234	0.51	2.70
C6	235.6	13.92	179.84	6.91	4.97	4.54	39592	104118	32.90	172.73

Milky Way-like Halos: Aquarius ICs Springel+ 2008, Marinacci+ 2014

Basic Dust Scaling Relations for 8 MW-like Halos

gas mass vs. dust mass

Basic Dust Scaling Relations for 8 MW-like Halos

dust mass vs. gas fraction

reasonable agreement between model M16 and various dust scaling relations

Dust-to-Metal Ratio

- at low z, there are small pockets of varying dust-to-metal ratio
- at higher z, also large-scale variation of dust-to-metal ratio
- overall: dust-to-metal ratio not constant/uniform

Dust Surface Density

- dust formation reduces gas phase metal abundance: O/H reduced by ~0.5 dex at z=0
- reduces metal line cooling

Consequences of Dust Formation: 'higher order' implications

reduced metal line cooling also affects the star formation rates and final stellar mass: (depends on details of dust model)

- ~ factor 2-3 reduction in star formation rate at late times
- ~30% reduction of star mass at z=0

Beyond Galactic Mass Scale: Global Dust Statistics

what do globally integrated dust properties like the cosmic dust density as a function of redshift look like?

dust within and between galactic halos (not just ISM) has to be modeled reliably

explore simple M16 model beyond the MW mass scale

Name	Volume $[(h^{-1} \operatorname{Mpc})^3]$	Ν	$\epsilon [h^{-1}{ m kpc}]$	$m_{ m dm} \ [h^{-1} { m M}_\odot]$	$m_{ m gas}$ $[h^{-1}{ m M}_{\odot}]$	physics
L25n128	25^{3}	$2 imes 128^3$	2.5	5.26×10^8	9.82×10^7	fiducial
L25n256	25^{3}	2×256^3	1.25	$6.58 imes 10^7$	$1.23 imes 10^7$	fiducial
L25n512	25^{3}	2×512^3	0.625	8.22×10^6	1.53×10^6	fiducial

McKinnon+ (in prep)

Cosmic Dust Density

Dust Destruction: thermal sputtering of dust grains due to ion collisions within hot gas

$\frac{\mathrm{d}a}{\mathrm{d}t} = -\tilde{h}$	$\left(\frac{\rho}{m_{\rm p}}\right)$	$\left[\left(\frac{T_0}{T}\right)^{\omega}\right]$	+1 -1
	(P)		_

density and temperature dependent fitting formula

$$\tau_{\rm sp} = a \left| \frac{\mathrm{d}a}{\mathrm{d}t} \right|^{-1} = \left(\frac{a}{\tilde{h}} \right) \left(\frac{m_{\rm p}}{\rho} \right) \left[\left(\frac{T_0}{T} \right)^{\omega} + 1 \right]$$
$$\approx 0.17 \left(\frac{a}{0.1 \,\mu\mathrm{m}} \right) \left(\frac{10^{-27} \,\mathrm{g \, cm^{-3}}}{\rho} \right) \left[\left(\frac{T_0}{T} \right)^{\omega} + 1 \right] \,\mathrm{Gyr}$$

sputtering time scale

Tsai & Mathews 1995, Hirashita+ 2015

Within each cell integrate for each element:

$$\left(\frac{\mathrm{d}M_{i,\mathrm{dust}}}{\mathrm{d}t}\right)_{\mathrm{sp}} = -\frac{M_{i,\mathrm{dust}}}{\tau_{\mathrm{sp}}/3}$$

Cosmic Dust Density for Improved Model

Dust Mass Function

dust surface density profile as a function of projected radial distance in physical units around galactic centers at z = 0.3

simulated dust surface density profiles wellconverged out to $r \sim 300$ kpc; higher resolution runs showing slightly greater dust surface density out to Mpc scales

Note: High Temperature Dust Cooling

- competition between thermal sputtering and dust replenishment
- if there is sufficient dust the cooling rates increase

Some Potential Next Steps:

- variations of grain size distribution (e.g., shattering, coagulation)
- dust interaction with radiation (e.g., radiation pressure)
- more detailed dust destruction (e.g., grain-grain collisions, detailed sputtering yields, cosmic rays)
- dust growth refinements (e.g., more detailed treatment of sticking probabilities)
- dust heating/cooling (e.g., hot gas cooling)
- dust production (e.g., condensation efficiency refinements)
- hydro-dust coupling (e.g. active dust particles using tracer particles)
- ..

- most of this has already been studied in a variety of small-scale simulations
 how does their interplay affect the dust content of the galaxies pepulation?
- how does their interplay affect the dust content of the galaxies population?

Overview: Variations of Dust Model

Variable	Fiducial Value	Description
$\delta_i^{\rm AGB,C/O>1}$	0.0 for $i = H$, He, N, O, Ne, Mg, Si, Fe, 1.0 for $i = C$	dust condensation efficiency for species i in AGB stars with C/O > 1 in ejecta
$\begin{split} &\delta_i^{\text{AGB,C/O}<1} \\ &\delta_i^{\text{SN}} \end{split}$	0.0 for $i = H$, He, N, C, Ne, 0.8 for $i = O$, Mg, Si, Fe 0.0 for $i = H$, He, N, Ne, 0.5 for $i = C$, 0.8 for $i = O$, Mg, Si, Fe	dust condensation efficiency for species i in AGB stars with C/O < 1 in ejecta dust condensation efficiency for species i in SNe
$ au_{ m g}^{ m ref}$	0.2	reference dust growth timescale, in units of [Gyr]
ϵ	0.3	SN destruction efficiency

grain size distribution

Thermal sputtering rate depends linearly on grain size. Currently, we do not follow the evolution of grain sizes; we therefore use a fixed grain size for our fiducial model.

fiducial model: $a=0.1\,\mu{
m m}$

Note: implementing grain size distributions is straightforward: similar to having IMF for macroscopic stellar particles

reasonable approximation since grain size distributions are typically sharply peaked

- surface density of dust as a function of radial distance
- comparison to M31 and MW measurements and SDSS
- sharp rise of dust density towards galaxy reproduced
- SDSS r⁻⁸ scaling roughly reproduced
- central drop of dust density not reproduced. Why?

Dust along the Star Formation Main Sequence

dustiest galaxies are those with the highest star formation rates

Dust Growth:

M16 either too much dust production or too little dust destruction

Remaining Issues: Redshift Evolution

- · dust grows in monotonic fashion, which is wrong
- the nature of dust processes makes the dust mass function behave in a much more dynamic way than the galaxy stellar mass function.
- a dust growth mechanism that allows for more variation among galaxies may be needed to form dust-rich galaxies at high redshift but also avoid overproducing dust at low redshift.