Reconciling Dwarf Galaxies with LCDM Cosmology

Andrew Wetzel

Moore Fellow

Carnegie Fellow in Theoretical Astrophysics

The Carnegie Observatories

with the Feedback In Realistic Environments Collaboration

dwarf galaxies: significant challenges to the Cold Dark Matter (CDM) model

"missing satellites" problem

(probably) too few observed satellite galaxies compared with dark-matter subhalos in CDM

"too big to fail" problem

dark-matter subhalos in CDM are too dense compared with observed satellite galaxies

Andrew Wetzel

dwarf galaxies: significant challenges to the Cold Dark Matter (CDM) model

"missing satellites" problem

(probably) too few observed satellite galaxies compared with dark-matter subhalos in CDM

—> Can a CDM-based model produce a satellite stellar mass function as observed?

"too big to fail" problem

dark-matter subhalos in CDM are too dense compared with observed satellite galaxies

—> Can a CDM-based model produce a satellite dynamical mass (velocity dispersion) function as observed?

Caltech - Carnegie

Andrew Wetzel

The Latte Project: the Milky Way on FIRE

simulating a Milky Way-mass galaxy with a realistic population of satellite dwarf galaxies

Wetzel et al 2016, ApJL submitted, arXiv:1602:05957

model for star formation

- High resolution to capture structure of multi-phase inter-stellar medium
 - \odot m_{gas} = 7070 M_{sun}
 - hgas = 1 pc (min), 25 pc (typical)
 - h_{dm} = 20 pc
 - t_{step,min} = 180 yr

- Cooling from atoms, molecules, and 9 metals down to 10 K
- Star formation only in self-gravitating clouds

model for stellar feedback

- Heating:
 - Supernovae: core-collapse (II) and Ia
 - Stellar Winds: massive O-stars & AGB stars
 - Photoionization (HII regions) + photoelectric heating

- Explicit Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

Supernovae

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

• Stellar Winds $\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$

Andrew Wetzel

dark matter-only simulation

dark matter with effects of baryons

stars

 $M_{star} = 9 \times 10^{10} M_{sun}$ $SFR = 3.4 M_{sun}/yr$

stellar mass function of satellites

Andrew Wetzel

stellar mass function of satellites

Andrew Wetzel

stellar velocity dispersion function of satellites

Andrew Wetzel

stellar velocity dispersion function of satellites

Andrew Wetzel

mass - metallicity relation

Andrew Wetzel

What causes the lack of (massive) satellite dwarf galaxies around the Milky Way-mass host?

inclusion of baryons destroys dark-matter subhalos

Andrew Wetzel

subhalo number density profile

Caltech - Carnegie

dark-matter subhalo mass function

Andrew Wetzel

stellar feedback drives gas outflows/inflows that can produce dark-matter cores

Andrew Wetzel

stellar feedback drives gas outflows/inflows that can produce dark-matter cores

Andrew Wetzel

simulated dwarf galaxies have bursty star formation

Andrew Wetzel

Caltech - Carnegie

feedback-driven gas outflows in dwarf galaxies

fluctuations in galaxy radius at fixed Mstar

Andrew Wetzel

detailed stellar (and gas) kinematics in dwarf galaxies will provide **robust** tests of feedback models and the nature of dark-matter coring

The Latte Project: the Milky Way on FIRE

Andrew Wetzel

Caltech - Carnegie