Secrets of dust evolution from numerical simulations of GMCs

Svitlana Zhukovska Max Planck Institute for Astrophysics Clare Dobbs (Uni Exeter), Ed Jenkins (Princeton Uni) Ralf Klessen (Uni Heidelberg)

Ringberg castle – 10.05.2016

Small scale variations of dust properties

Si depletion – gas density relation in the local Milky Way from UV absorption lines *Herschel* HERITAGE data with < 18 pc resolution in SMC in 5 bands (Roman-Duval, ... Zhukovska'14)

3D dust evolution model

Cycle of dust between dense and diffuse gas

Lifetimes of grains against destruction

Dust abundances as a function of environment

Numerical simulations of GMC evolution

Evolution of spiral Milky Way-like disk

- Stellar gravitational potential with 2-4 armed spiral component
- Heating and cooling
- Self gravity
- Stellar feedback
 - instantaneous, inserted above a critical density
 - thermal+kinetic energy added as Sedov solution
- 8 million SPH particles
- Evolution time 300 Myr

log column density [g/cm²]

log column density [g/cm²]

Dust evolution model

- Model dust evolution via post-processing of numerical simulations of GMC evolution
- Fix the total abundances, follow the fraction of key element in dust
- Start with abundances from diffuse ISM: 70% of Si in dust
- Include only main source and sink of dust
 - 1. Growth by accretion in ISM
 - 2. Destruction by SN blast waves

Dust model – growth in ISM

- Equation for condensation degree of element X Zhukovska+2008
- Timescale of dust accretion

• Experimental work on dust growth at low T_{gas}: Krasnokutski+2014; Rouillé+2014

 $\langle a \rangle_3 = \frac{\langle a^3 \rangle}{\langle a^2 \rangle}$

Dust model – growth in ISM

Electrostatic focusing

- Grains and gas are charged in diffuse medium
- Changes of the cross section for collision rate
- decreases due to collisions with charges!

a_{\min} (nm)	$\langle a \rangle_3 \text{ (nm)}$	
	CNM	other phases
1	0.8	15.8
3	7.7	27.4
5	48.2	35.4

Dust model – growth in ISM

Sticking coefficient

- All dust models assume maximum sticking coefficient ~1
- Problem overestimate dust growth in warm medium!
- BUT very difficult to measure α

Test 3 cases for α :

- 1. Physisorption
- 2. Chemisorption
- 3. Growth at CNM with T_{qas} < 300K

Spatial distribution of SN remnants in a simulation snapshot

McKee 1989, Tielens+1994, Jones +1994, 1996, Bocchio+2014, Slavin+2015

Gas-to-dust ratio map

Dust surface density map

Gas-to-dust ratio map

Si gas-phase abundances from UV absorption lines

- Si gas-phase abundances from UV absorption lines
- Calculate PDFs for gas phase Si abundances → synthetic relation

Sticking coefficient =1 for all T_{gas} overestimates dust abundances!

Model relations for various sticking coefficient

- Si gas-phase abundances from UV absorption lines
- Calculate PDFs for gas phase Si abundances → synthetic relation

Best fit model with sticking coefficient =1 in CNM, 0 for T_{gas} >300K

Model relations for various sticking coefficient

Dust destruction/production balance

- Comparison with simple one-zone models
- only chemical evolution fixed physical conditions
- ISM growth dominates dust production

Dust destruction/production balance

- Balance between destruction and production of dust after 130 Myr at the rate ~0.1 M_{sun} Gyr⁻¹ pc⁻²
- ISM growth rate 20-30 times larger than stardust production rate

Where does dust grow?

- 10⁰ Production rate [M_☉ Gyr⁻¹ pc⁻²] 10⁻² 10⁻³ 10⁻⁴ 5<n<50cm⁻³ 50<n<500cm⁻³ n>500cm⁻³ n<0.05cm⁻³ 0.05<n<0.5cm⁻³ 0.5<n<5cm⁻³ total 10⁻⁵ 50 100 150 200 250 0 Evolution time [Myr]
- Highest production rates in CNM at densities 5cm⁻³<n_{gas}<50cm⁻³

Timescale of growth and destruction

 Timescale at the steady state 400 Myr - similar to "classical" lifetime of grains T_d~0.5 Gyr Jones+1996, Bocchio+2015

$$\tau_{destr} = \frac{M_{ISM}}{f_{SN}R_{SN}m_{cleared}}$$

 Timescale of dust growth and destruction in the ISM with SPH simulations

Take away messages

- Spatial dust distribution is determined by the balance between destruction and re-formation in ISM. Timescales of these processes ~0.5Gyr << timescale of dust production by stars
- Destruction in the diffuse phase is necessary to explain low Si depletions in diffuse ISM
- Slope of the observed Si depletion density relation is explained by accretion of gas-phase species, its absolute magnitude excludes small silicate grains with radii <3nm
- Sticking coefficient must decrease with temperature in hydrodynamic simulations