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Herschel HERITAGE data with < 18 pc 
resolution in SMC in 5 bands (Roman-Duval, 
… Zhukovska’14)  

Small scale variations of dust properties 
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Si depletion – gas density relation in the local 
Milky Way from UV absorption lines 



Image Credit: ESA

3D dust evolution model 



 Numerical simulations of GMC evolution 

Dobbs&Pringle 2013 

log column density [g/cm2]Evolution of spiral Milky Way-like disk 
•  Stellar gravitational potential with 

2-4 armed spiral component 
•  Heating and cooling  
•  Self gravity 
•  Stellar feedback 

•  instantaneous, inserted 
above a critical density  

•  thermal+kinetic energy 
added as Sedov solution  

•  8 million SPH particles 
•  Evolution time 300 Myr 



 Gas evolution with 3D hydrodynamics 

•  Model dust evolution via post-processing of numerical simulations of 
GMC evolution 

•  Fix the total abundances, follow the fraction of key element in dust 
•  Start with abundances from diffuse ISM: 70% of Si in dust 
•  Include only main source and sink of dust 

1.  Growth by accretion in ISM 
2.  Destruction by SN blast waves 

Dust evolution model 



 Gas evolution with 3D hydrodynamics 

•  Equation for 
condensation degree 
of element X 
Zhukovska+2008 

•  Timescale of dust 
accretion 

Dust model – growth in ISM 
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from SPH parts 

•  Experimental work on dust growth at low Tgas: Krasnokutski+2014; Rouillé+2014 

sticking coefficient 
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 Gas evolution with 3D hydrodynamics Dust model – growth in ISM 

•  Grains and gas are charged in 
diffuse medium 

•  Changes of the cross section 
for collision rate 

•  decreases due to collisions 
with charges! 

CNM

focusing

repulsion

Electrostatic focusing 



 Gas evolution with 3D hydrodynamics Dust model – growth in ISM 

Sticking coefficient 

•  All dust models assume 
maximum sticking coefficient ~1 

•  Problem - overestimate dust 
growth in warm medium! 

•  BUT very difficult to measure α 

Test 3 cases for α: 
1.  Physisorption 
2.  Chemisorption 
3.  Growth at CNM with Tgas<300K 
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 Gas evolution with 3D hydrodynamics Dust model – destruction 
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Spatial distribution of SN remnants in a simulation snapshot 

McKee 1989, Tielens+1994, Jones +1994, 1996, Bocchio+2014, Slavin+2015 



 Gas evolution with 3D hydrodynamics Gas-to-dust ratio map 



 Gas evolution with 3D hydrodynamics Final dust distribution 

Gas-to-dust ratio mapDust surface density map

Msunpc-2



 Gas evolution with 3D hydrodynamics Validation of the models 

•  Si gas-phase abundances 
from UV absorption lines  

B star
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 Gas evolution with 3D hydrodynamics Validation of the models 

•  Si gas-phase abundances 
from UV absorption lines  

•  Calculate PDFs for gas 
phase Si abundances ! 
synthetic relation 

Sticking coefficient =1 for 
all Tgas overestimates dust 
abundances! 

Model relations for various sticking coefficient



 Gas evolution with 3D hydrodynamics Validation of the models 

•  Si gas-phase abundances 
from UV absorption lines  

•  Calculate PDFs for gas 
phase Si abundances ! 
synthetic relation 

Best fit model with 
sticking coefficient =1 in 
CNM, 0 for Tgas>300K 

Model relations for various sticking coefficient
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•  Comparison with simple 
one-zone models 

•  only chemical evolution - 
fixed physical conditions 

•  ISM growth dominates 
dust production 

Dust destruction/production balance 

Zhukovska+2008 

Dwek 1998 

Stardust - 1D model  

ISM growth - 1D model  



Dust destruction/production balance 
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Zhukovska+2008 

Dwek 1998 

Stardust - 1D model  

ISM growth - 1D model  
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•  Balance between 
destruction and 
production of dust after 
130 Myr at the rate     
~0.1 Msun Gyr-1 pc-2 

•  ISM growth rate 20-30 
times larger than 
stardust production rate 



 Gas evolution with 3D hydrodynamics Where does dust grow? 

•  Highest production rates 
in CNM at densities 
5cm-3<ngas<50cm-3 
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Timescale of growth and destruction 
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•  Spatial dust distribution is determined by the balance between 
destruction and re-formation in ISM. Timescales of these 
processes ~0.5Gyr << timescale of dust production by stars 

•  Destruction in the diffuse phase is necessary to explain low Si 
depletions in diffuse ISM 

•  Slope of the observed Si depletion – density relation is explained 
by accretion of gas-phase species, its absolute magnitude 
excludes small silicate grains with radii <3nm 

•  Sticking coefficient must decrease with temperature in 
hydrodynamic simulations 

Take away messages 


